Выбрать главу

В сборнике «Физики продолжают шутить» была опубликована юмореска примерно такого содержания: экспериментаторы обнаружили, что скорость света в пустоте постоянна, теоретики принялись глубокомысленно рассуждать, отчего бы она была именно такова? Эйнштейн сказал: так и должно быть, после чего теоретики— одни раньше, другие позже — воскликнули: какая гениальная мысль!

Шутка обыгрывает реальное событие: Эйнштейн объявил факт принципом[10]. И уж наверняка то же самое он сделал и в случае с эквивалентностью инертной и тяжелой масс: обратил факт, который мог рассматриваться как чисто случайное совпадение, в фундаментальный принцип устройства Вселенной.

«Уравнение в правах» поля тяготения и неинерциальной (то есть движущейся не равномерно, а ускоренно) системы отсчета позволило сформулировать те условия, при которых законы физики справедливы для любых систем отсчета. Это положение и называют общим принципом относительности.

Так наука, начав свой путь здесь с утверждения, что законы меняются при переходе от инерциальных систем к неинерциальным, нашла способ решить это реальное противоречие природы и парадоксальным образом пришла к прямо как будто противоположному суждению. Не будем забывать только, что теперь при таком переходе уравнения, выражающие эти законы, по определенным правилам преобразуются.

Опять перед нами тот же «парадокс парадоксов» Бора: если истина действительно глубока, то справедлива и истина ей противоположная. Но как же все это построение может кому-то (пусть даже только самим физикам!) казаться проще старой ньютоновской теории?

Эйнштейн и Инфельд отвечают на этот вопрос так: «Чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое оружие нашего рассуждения; путь от теории к наблюдению становится длиннее, тоньше и сложнее. Хотя это и звучит парадоксально, но мы можем сказать: современная физика проще, чем старая физика, и поэтому она кажется более трудной и запутанной».

Получается, условно говоря, так: физическая часть теории настолько проста, что математическая должна быть очень сложной. На самом деле, конечно, отделить одно от другого тут невозможно, и все-таки сам Эйнштейн дает, как видите, право на такое противопоставление.

Снова перед нами математика выступает в роли естественного языка природы; речь человека, плохо овладевшего чужим языком, поневоле проста; чем лучше знаешь язык, тем больше слов и их форм употребляешь. Но следует ли из этого, что ты отказался от первоначальной простоты ради сложности? Сложность здесь естественна, физическая простота прикрыта этой математической сложностью.

Бернард Шоу, замечательный английский писатель, как-то, обращаясь к ученым, сказал: «Коперник доказал, что Птолемей был неправ. Кеплер доказал, что Коперник был неправ. Галилей доказал, что Аристотель был неправ. Но в этом месте цепь обрывается, потому что наука впервые столкнулась с таким неподдающимся расчету явлением природы, как англичанин. Будучи англичанином, Ньютон постулировал прямолинейную Вселенную… хотя знал, что Вселенная состоит из движущихся тел и что ни одно из этих тел не движется по прямой линии, да и не может двигаться по прямой. Для этого, чтобы объяснить, почему все линии в его прямолинейной Вселенной искривлены, он выдумал специальную силу, которую назвал тяготением».

А правда ведь, оригинально соединил мастер парадокса первый закон механики Ньютона (закон инерции) и закон всемирного тяготения?

Продолжая в том же духе, можно заявить, что и Эйнштейн проявил себя «как англичанин». Вдумаемся вот в эту его фразу: «…и вот мне пришло в голову… тот факт, что ускорение свободного падения не зависит от природы падающего вещества, допускает следующее толкование: в полях тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения».

Уж не выкинул ли Эйнштейн из описываемого им мира тяготение вовсе — вместо того, чтобы объяснить его? Нет, не выкинул. Но стал рассматривать это явление совсем по-новому. Он свел законы, управляющие тяготением, к законам, управляющим пространством-временем. И одно из имен, под которыми известна общая теория относительности — геометродинамика[11]. Вдумаемся в этот длинноватый термин. Его вторая половина — слово «динамика» — было введено Лейбницем как имя науки о движении тел под влиянием сил; слово «геометрия», в данном случае сочетавшееся странным браком со слогом «динамика», объяснять не надо. А расшифровка общего имени новой семьи может дать и такой результат: описание движения тел языком геометрии.

вернуться

10

Стоит оговориться, что Эйнштейн, возможно, не знал об эксперименте, в котором было доказано постоянство скорости света в пустоте, и пришел к этому своему принципу, исходя из общих теоретических рассуждений.

вернуться

11

Под геометродинамикой в широком смысле слова понимают идею описания всех полей по создаваемым ими искривлениям пространства.