Любопытно отметить, что большая доля проверок закона всемирного тяготения Ньютона тоже пришлась на время, отделенное от публикации закона примерно полувеком.
Еще десять — пятнадцать лег назад пересчитать все пункты, по которым теория гравитации Эйнштейна была проверена, удалось бы по пальцам одной руки. Теперь соответствующих экспериментов проведено и планируется столько, что рассказать в этой книге удается далеко не о всех из них.
Ну, во-первых, проверка принципа эквивалентности тяжелой и инертных масс идет в актив общей теории относительности.
В ее пользу высказывается и сумма выводов, полученных в некоторых областях физики элементарных частиц.
Наблюдения Эддингтона за поведением звездного луча вблизи Солнца были повторены многократно. Но очень долго при этом результаты наблюдений (степень искривления луча) довольно сильно отклонялись в сторону от предсказания Эйнштейна. Правда, то в одну сторону, то в другую, но разброс был слишком велик, чтобы не огорчать и не беспокоить привыкших к точности астрономов.
Совсем недавно удалось решить эту проблему, только уже не с волнами света, а с сантиметровыми радиоволнами от ярких небесных радиоисточников. Точность совпадения наблюдений с предсказанием достигла двух процентов. И ни в одном из многих измерений не удалось обнаружить каких-либо «противопоказаний» против общей теории относительности.
Новые подтверждения предсказанным теорией относительности фактам были неожиданно (неожиданно ли?) обнаружены в старых звездных каталогах — списках звезд с указанием их характеристик и особенностей.
Лет десять назад советские ученые Л. Я. Арифов и Р. К. Кадыев нашли еще целых сто тридцать пять «звездных автографов», выданных Эйнштейну.
Чтобы стала понятна самая суть дела, придется коснуться метода определения расстояний до звезд. Один из двух главных способов (а до конца XIX века и единственный) заключается в измерении расстояния, на которое звезда смещается на нашем небе за полгода в зависимости от того, в какой точке своей орбиты находится Земля. Астрономы строят прямоугольный треугольник, его гипотенуза — расстояние от Солнца до звезды, а малый катет — большая полуось эллипса земной орбиты. Малый угол (при звезде) в том треугольнике называют годичным звездным параллаксом. Вычисление его размера по законам тригонометрии и позволяет затем определить расстояние до звезды. Годичный параллакс в одну секунду соответствует здесь одному парсеку, причем чем меньше параллакс, тем дальше от нас звезда. К слову сказать, для самой близкой к Земле звезды, которую так и зовут Ближайшая Центавра, параллакс равен семидесяти шести сотым секунды.
Теперь (уже почти столетие) годичный параллакс и, соответственно, расстояние до звезды умеют определять еще и на основании изучения ее спектра, так называемым астрофизическим методом.
Арифов и Кадыев впервые обратили внимание на то, что при этих двух методах должны (должны!) получаться несколько разные результаты. Ведь луч звезды, согласно общей теории относительности, искривляется в поле тяготения Солнца. Значит, мы видим звезду не совсем на том месте, где она находится на самом деле, значит, ее параллакс первым, тригонометрическим, методом мы определяем не совсем правильно.
Между тем при астрофизическом методе определения параллакса на его величине эффекты, связанные с геометродинамикой Эйнштейна, не сказываются, результат получается более точным. Разницу между астрофизическим и тригонометрическим параллаксами можно определить расчетом.
Ученые так и сделали — и средняя разница составила четыре тысячных доли секунды.
А затем они взяли звездный каталог на две тысячи двести восемьдесят девять звезд с указанием для каждой из них того и другого параллакса и выбрали из этих звезд сто тридцать пять, для которых тот и другой годичные параллаксы были определены с одной и той же степенью точности.