Сейчас ряд ученых разрабатывает гипотезы, связанные с влиянием на Землю центров тяготения, куда более отдаленных, чем Солнце. Ставится такой вопрос: случайно ли самый высокий материк нашей планеты, Антарктида, находится в районе южного полюса? Ведь сейчас наша планета обращена именно Южным своим полушарием в сторону центра Галактики. Нет ли здесь проявления некой закономерности?..
Слава маятнику
Слабость и даже, можно сказать, беспомощность самой могучей из сил нашей Вселенной легко доказываются опытом, который каждый из нас, не задумываясь особенно над выводами, успел проделать еще в раннем детстве. Крошечный магнит, извлеченный из электродвигателя игрушечного автомобильчика, поднимает целую цепочку канцелярских скрепок, небольшой гвоздь, пол-дюжины бритвенных лезвий. Поднимает — значит, одерживает победу над притяжением целой огромной планеты! Вот ведь как!
Тем поразительнее, что мы научились различать чрезвычайно мелкие колебания этой самой слабой и самой могучей силы. Причем с помощью удивительно простых приборов. Первым из них по праву должен быть назван маятник. Что на самом деле проще его?
Но нужны были гений и наблюдательность девятнадцатилетнего Галилея, чтобы заметить, что люстра в Пизанском соборе по мере уменьшения размаха своих колебаний вовсе не тратит на каждое из них все меньше и меньше времени. Именно с этого наблюдения началась не только история маятника как точного прибора, но история подлинно научного исследования гравитации. Должно было пройти еще семь лет, прежде чем Галилей проделал свои знаменитые опыты по сбрасыванию разных предметов с Пизанской башни. И с самого начала видел он глубокую связь между законами, управляющими падением тел, и законом, управляющим качаниями маятника.
Маятник стал прибором, с помощью которого установили ускорение свободного падения. Именно маятник относительно точно — куда точнее, чем геометрические измерения меридианных дуг, — показал, насколько именно Земля сплюснута у полюсов (кстати, в Лапландии экспедиция Мопертюи немало поработала и с маятниками). Свойства маятника так тесно связаны с силой тяжести, с земным тяготением, что известный немецкий физик Макс Лауэ как-то заметил: «Маятниковые часы — это не просто ящик, который вы покупаете в магазине; маятниковые часы — это тот ящик, который вы купили в магазине вместе с самой Землей. Если вы хотите передать маятниковые часы от одного наблюдателя к другому, вы должны выдать каждому из них по Земле; конечно, это довольно накладное мероприятие».
Период колебания маятника зависит от его длины и силы тяжести. И — в принципе — только от них. Выходит, зная длину маятника (а ее можно измерить, хотя тут возникают сложности, которых здесь не стоит касаться) и период колебаний (тоже поддающийся измерению), можно определить силу тяжести в любой данной точке. При этом очень важно, что вместо того, чтобы ловить доли секунды в поисках точного промежутка времени, отданного на одно колебание, можно определить, скажем, время, за которое маятник делает тысячу, десять, сто тысяч колебаний, и разделить это время на их число — так сразу многократно повышается точность наших знаний.
Вот такие маятники и стали главными приборами на первых гравиметрических станциях, покрывших нашу планету довольно густой сетью уже с конца XIX века.
Впрочем, наиболее точно и бесспорно ускорение земного тяготения определяется самым прямым образом: наблюдением за тем, как падает пробное тело в вакууме.
Определить при помощи маятника абсолютную силу тяжести чрезвычайно трудно, ведь тут многое зависит от точного измерения его длины. Поэтому в наше время маятники предпочитают использовать для выяснения разницы между силой тяжести в двух точках. В этих двух точках один и тот же маятник будет иметь разный период колебаний, и такая разница будет зависеть от различий в силе тяжести. Надо было только выбрать на Земле место, где силу тяжести следовало принять за эталон. Поскольку впервые абсолютное значение силы тяжести на Земле было установлено в городе Потсдаме (ныне — в ГДР) в 1898–1904 годах, то именно Потсдам стал опорным пунктом для мировой гравиметрической системы.
Нынешние наземные гравиметрические измерения, по сути, относительны, они показывают прирост или падение силы тяжести в какой-то точке Земли сравнительно с исходным пунктом. (Надо оговориться: поскольку Земля вращается, то на каждое тело на ее поверхности действует, кроме силы земного притяжения, еще и центробежная сила; сила тяжести есть равнодействующая этих двух сил.)