Выбрать главу

Ключевую роль в этих структурах играют двойные связи. В «Ступенях испепеляющих» упоминалось о том, что химическая связь представляет собой циклический процесс: связующий электрон «переключается» из состава одного связуемого атома в состав другого, и обратно. При двойной связи два таких процесса происходят параллельно. Кроме того, при двойной связи возможно явление, о котором говорил Полинг, а именно — циклические переходы связующих электронов с одной связочки на другую. В данном случае такие переходы возможны, если они происходят синхронно. Причём, если равны обе частоты «переключений», то максимальная частота синхронных переходов может быть равна частоте «переключений». Тогда результирующая связка будет иметь двойную синхронизацию — другими словами, она будет являться дважды резонансной. Как нам представляется, такие дважды резонансные связки как раз и обеспечивают высокоэнергичные соединения атомов, которые характерны для биомолекул.

Самопроизвольное образование дважды резонансных связок крайне маловероятно. Валентные электроны в атомах находятся в различных энергетических состояниях, и, если двойная связь образуется самопроизвольно, то частоты «переключений» связующих электронов, как правило, различаются. Поэтому такая связь имеет, как правило, нерезонансный характер. Но примечательно, что частоты «переключений» и синхронных переходов зависят от компоновки атомарных частотных гнёзд, в которых удерживаются валентные электроны. Значит, частотами «переключений» и синхронных переходов можно управлять, изменяя компоновку частотных гнёзд в связуемых атомах.

И что же мешает этому? Если атомарные структуры держатся не благодаря электромагнитному взаимодействию, а благодаря особенностям Физической Арены, формируемым с программного уровня, т. е. если компоновка частотных гнёзд в атоме диктуется программными средствами, то с помощью дополнительной программы можно изменять эту компоновку. Таким образом, воздействиями с программного уровня, через создание благоприятных условий для образования дважды резонансных связок, возможно выстраивать молекулярные структуры, которые не образуются из «неуправляемых» атомов. Следует подчеркнуть, что эти воздействия с программного уровня являются не энергетическими: они лишь перераспределяют энергии на физическом уровне, так что закон сохранения физической энергии не нарушается.

--

Вспомним: гипотеза о том, что в биосинтезе непременно участвуют ферменты, появилась как попытка объяснения биохимических процессов, «невозможных» по меркам неживой природы. Но если вещество живой природы охвачено эффективным управлением с программного уровня, то проблема разрешается гораздо проще: не требуются никакие катализаторы для тех биохимических реакций, которые и без катализаторов полностью управляемы.

Это, конечно, не означает, что ферменты в организмах не нужны вовсе. Они нужны, но — для работы с поступающими в организмы чужеродными биомолекулами, к которым не подключено «своё» управление. Аккуратно распиливать чужие биомолекулы на кусочки — вот работа для ферментов, например, для пищеварительных. Вклиниться в «переключения» химической связи и разорвать её возможно, если у фермента частота смен электронных конфигураций в радикале, работающем в качестве молекулярной пилы, превышает частоту смен электронных конфигураций в распиливаемой связи. Не всегда это так, и у молекулярной пилы может «не хватать оборотов» для того, чтобы справиться с высокоэнергичной связкой. Но ведь молекулярная пила своего фермента управляема, и можно добавить ей оборотов! Здесь — разгадка того феномена, что химически один и тот же фермент при одних и тех же физических условиях либо распиливает мишень, либо нет. Наука комментирует это так, что мало иметь фермент — он работает, лишь будучи активирован!

Итак, активированные ферменты хороши для того, чтобы с их помощью ломать чужие биомолекулы. Строить же свои биомолекулы — это совсем другая задача, здесь ферменты не требуются. Обрисуем вкратце возможности управляемого биосинтеза с применением вышеописанных воздействий на вещество.

Управлять атомами можно было так, чтобы первые биомолекулы собирались, что называется, на пустом месте: в каком-нибудь проницаемом для солнечного света растворе. В энергию резонансных связей можно было превращать энергию возбуждённых электронных состояний, которые образуются в атомах на свету — этот принцип используется при фотосинтезе. Всё бы хорошо, но скорость управляемого биосинтеза «на пустом месте» ограничена тем, что, при заранее известном дизайне всей молекулы, возможно лишь последовательно присоединять очередные атомы или радикалы к уже синтезированному кусочку. Казалось бы, по-другому и быть не может. Но с давних пор применяется гораздо более эффективный способ управляемого биосинтеза: с использованием молекул-матриц, обеспечивающих возможность многоканальной параллельной сборки нужной молекулы!