Выбрать главу

Следующий кандидат оказался специалистом по «системам эллиптических уравнений в частных производных» (полтора десятка лет после защиты диссертации и более двадцати опубликованных работ).

Этого я спросил: «Чему равен лапласиан от функции 1/r в трёхмерном евклидовом пространстве?»

Ответ (через обычные 15 минут) был для меня поразительным; «Если бы r стояло в числителе, а не в знаменателе, и производная требовалась бы первая, а не вторая, то я бы за полчаса сумел посчитать её, а так – вопрос слишком труден».

Поясню, что вопрос был из теории эллиптических уравнений типа вопроса «Кто автор «Гамлета»?» на экзамене по английской литературе. Пытаясь помочь, я задал ряд наводящих вопросов (аналогичных вопросам об Отелло и об Офелии): «Знаете ли вы, в чём состоит закон Всемирного тяготения? Закон Кулона? Как они связаны с лапласианом? Какое у уравнения Лапласа фундаментальное решение?»

Но ничего не помогало: ни Макбет, ни Король Лир не были известны кандидату, если бы шла речь о литературе.

Наконец председатель экзаменационной комиссии объяснил мне, в чём дело: «Ведь кандидат занимался не одним эллиптическим уравнением, а их системами, а ты спрашиваешь его об уравнении Лапласа, которое всего одно – ясно, что он никогда с ним не сталкивался!»

В литературной аналогии это «оправдание» соответствовало бы фразе: «Кандидат изучал английских поэтов, откуда же ему знать Шекспира, ведь он – драматург!»

Третий кандидат (а опрашивались десятки их) занимался «голоморфными дифференциальными формами», и его я спросил: «Какова риманова поверхность тангенса?» (об арктангенсе спрашивать я побоялся).

Ответ: «Римановой метрикой называется квадратичная форма от дифференциалов координат, но какая форма связана с функцией «тангенс», мне совершенно не ясно».

Поясню опять образцом аналогичного ответа, заменив на этот раз математику историей (к которой более склонны митрофаны). Здесь вопрос был бы: «Кто такой Юлий Цезарь?», а ответ: «Цезарями называли властителей Византии, но Юлия я среди них не знаю».

Наконец появился вероятностник-кандидат, интересно рассказывавший о своей диссертации. Он доказал в ней, что утверждение «справедливы вместе А и B» неверно (сами утверждения А и В формулируются длинно, так что здесь я их не воспроизвожу).

Вопрос: «А всё же, как обстоит дело с утверждением A самим по себе, без В: верно оно или нет?»

Ответ: «Ведь я же сказал, что утверждение «A и В» неверно. Это означает, что A тоже неверно». То есть: «Раз неверно, что «Петя с Мишей заболели холерой», то Петя холерой не заболел».

Здесь моё недоумение опять рассеял председатель комиссии: он объяснил, что кандидат – не вероятностник, как я думал, а статистик (в биографии, называемой CV, стоит не «proba», a «stat»).

«У вероятностников, – объяснил мне наш опытный председатель, – логика нормальная, такая же, как у математиков, аристотелевская. У статистиков же она совершенно другая: недаром же говорят «есть ложь, наглая ложь и статистика». Все их рассуждения бездоказательны, все их заключения ошибочны. Но зато они всегда очень нужны и полезны, эти заключения. Этого статистика нам обязательно надо принять!»

Специалиста по голоморфным формам тоже одобрили. Довод был ещё проще: «Курс голоморфных функций нам читал (в элитарной Высшей Нормальной Школе) знаменитый профессор Анри Картан, и там римановых поверхностей не было!» – сказал мне председатель. И добавил: «Если я и выучился римановым поверхностям, то только двадцать лет спустя, когда они мне понадобились для работы (в финансовой математике). Так что незнакомство с ними – отнюдь не недостаток кандидата!»

В Московском Университете такой невежда не смог бы окончить третий курс механико-математического факультета… Замечу, что все перечисленные выше невежды получили (у всех, кроме меня) самые хорошие оценки. Напротив того, был почти единодушно отвергнут единственный, на мой взгляд, достойный кандидат. Он открыл (при помощи «базисов Грёбнера» и компьютерной алгебры) несколько десятков новых вполне интегрируемых систем гамильтоновых уравнений математической физики (получив заодно, но не включив в список новых, и знаменитые уравнения Кортевега-де Фриза, Сайн-Гордон и тому подобное).

В качестве своего проекта на будущее кандидат предложил также новый компьютерный метод моделирования лечения диабета. На мой вопрос об оценке его метода врачами он ответил совершенно разумно: «Метод сейчас проходит апробацию в таких-то центрах и больницах, и через полгода они дадут свои заключения, сравнив результаты с другими методами и с контрольными группами больных, а пока эта экспертиза не проведена, и есть только лишь предварительные оценки, правда, хорошие».