— Выходит, — неуверенно сказал Сева, — вся эта бесконечная дорога сплошь заполнена числами?
— Именно сплошь! — ответила мама Двойка. — Можно сказать, непрерывно. У нас очень большая плотность населения. На всем пути не сыскать ни одной точечки, не заселенной каким-нибудь числом. Есть среди этих чисел и такие, величину которых мы никогда не можем вычислить точно.
— Что ж это за число, которое нельзя вычислить?
— Ну, хотя бы корень квадратный из двух: √2. Попробуйте найти число, которое при возведении в квадрат давало бы два.
Сева наморщил лоб, подумал немного, потом махнул рукой и засмеялся:
— И много таких чисел?
— Бесконечное множество. Их называют иррациональными в отличие от рациональных. Латинское слово «рацио» значит «разум». Следовательно, рациональные числа — это разумные числа, то есть числа, постижимые разумом.
Сева прямо задохнулся от смеха:
— Ой, умираю! Рациональные — значит разумные. А иррациональные — сумасшедшие, что ли?
— Ну, зачем же так! — обиделась мама Двойка. — Просто они не поддаются точному вычислению. Поэтому их долгое время не признавали числами. Но с тех пор как у нас появилась воздушная монорельсовая дорога (или числовая прямая — так ее называют по-другому), иррациональные числа после долгих скитаний получили, наконец, точный адрес. Вычислить их по-прежнему можно только приближенно. Зато легко указать место на монорельсовой дороге, где они живут. Вместе с числами рациональными они образуют дружную семью действительных чисел, — закончила мама Двойка и снова заставила нас удивиться.
— А разве бывают и недействительные?
— Конечно. Есть числа мнимые, есть комплексные…
Сева не дал ей договорить.
— Вспомнил! — заорал он. — И Мнимая Единица может на что-нибудь пригодиться!
— Да, да, — подтвердила я, — так ответил автомат маленькой буковке с зонтиком: i.
— Оно и понятно, — сказала мама Двойка, — латинской буквой i (по-русски — И) в Аль-Джебре обозначается Мнимая Единица.
— Но почему мнимая? Она что, воображаемая?
— Настолько воображаемая, что ей, как и другим мнимым числам, не нашлось местечка на всей бесконечной монорельсовой дороге.
— Так вот почему она была такая грустная! — смекнул Сева.
— А где же тогда живут мнимые числа? — спросил Олег.
— Всякому овощу свое время.
Пришлось спрятать любопытство в карман. Мы распрощались с мамой Двойкой и пошли… Куда бы ты думал? Конечно, в Парк Науки и Отдыха.
Как мы там отдыхали, узнаешь из следующего письма.
Таня.
Молотобойцы
(Сева — Нулику)
Здравствуй, старик! Не удивляйся, что вместо Олега пишу тебе я. Мне так захотелось самому рассказать, как я здорово отличился, что он уступил мне свою очередь.
Говорят, великие люди занимались физическим трудом и спортом. Лев Толстой косил траву, шил сапоги. Ученый Павлов играл в городки. А я решил стать молотобойцем.
Здесь в парке есть занятный аттракцион — силомер. Такие встречаются и у нас, но этот устроен немного по-другому.
У нас ударяешь молотом по наковальне, и гирька подскакивает вверх. Чем сильнее ударишь, тем выше она поднимется. На таком силомере меряются силами. На здешнем — знаниями.
Рейка, вдоль которой движется гиря, очень похожа на монорельсовую дорогу. Только числовая прямая здесь расположена по-другому: не в длину, а в вышину. И числа на ней, начиная с нуля, только положительные. На этом силомере возводят числа в степень.
Задумываешь число, возводишь в уме в какую-нибудь степень, а потом, чтобы проверить себя, бьешь молотком по наковальне. Гирька долетает до вычисленной степени. Если ты возвел правильно, у этого числа зажигается зеленый огонек, ошибся — красный.
Первый удар предоставили Тане. Ничего не поделаешь: девочка! Она возвела два в третью степень. У нее получилось восемь. Таня стукнула молотком, гирька взлетела к восьмерке, и зажглась зеленая лампочка.