Выбрать главу

Вы думаете, число Два называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы, — это возведение в степень!

Вот перемножились три b, и получилось Бэ в кубе: b3.

Десять с, перемножившись, образовали одночлен — Цэ в десятой степени: с10.

Одна комбинация сменяется другой. Перед нами возникают: a25, b40, c16, a6

И вот появляется Цэ в степени эн: сn.

Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведенное в любую степень. Подставьте вместо эн любое число — и ответ готов.

Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимнастические упражнения: умножение многочленов на одночлен. Вот уже образовались двучлены: а + b, а + с, потом трехчлены: а + b + с и много других. Сейчас они начнут умножаться на одночлены… Но в чем дело? Произошла какая-то заминка. Музыка смолкла. Ага! Теперь все ясно: оказывается, многочлены не могут ни на что умножаться, если их предварительно не заключить в скобки. Иначе может выйти ужасная путаница: никто не узнает, где тут одночлен, а где многочлен.

На поле появляются круглые скобки. Они становятся по бокам каждого многочлена. Ну вот, все в порядке, можно продолжать.

Начинается представление, под названием «Хитрый обманщик».

На поле появляется выражение: (а + b)с.

Цэ стучится в скобку, как в дверь.

Цэ. Хозяева дома?

А+Бэ (вместе). Да! А кто это?

Цэ. Это я, Цэ.

A+Бэ. А с вами никого нет?

Цэ (невинным голосом). Никого.

А+Бэ. Тогда входите.

Скобки открываются, Цэ входит и… раздваивается. Одно Цэ подходит к А, другое — к Бэ. И вот мы уже видим новую сумму: ас + bс.

Все негодуют. Свист, крики:

— Гоните обманщика!

А+Бэ (вместе). На помощь! Спасите!!

Вбегают дружинники и выносят отчаянно сопротивляющихся Цэ за скобки. Здесь обе буквы снова превращаются в одно Цэ.

Обманщик наказан. Справедливость торжествует. На поле снова красуется прежнее выражение: (а + b) с.

Пьеса имеет шумный успех. Артистов вызывают много раз, точнее, эн раз — n раз.

Сказав так, я никого не обману, и дружинникам не придется выносить меня за скобки.

Дорогие радиослушатели! Как видно, эти упражнения никогда не кончатся, а я уже устал. Очень прошу вас, возьмите карандаши и бумагу и придумайте сами пример на перемножение многочленов.

До свидания.

Репортаж с Центрального стадиона Аль-Джебры вел

Сева.

Пекари-жонглеры

(Снова Сева — Нулику)

Ну как, Нулик, здорово у меня вышло? Конечно, у того комментатора, который вел передачу со стадиона, получалось лучше. А по мне сойдет и так.

А сейчас я тебе своими словами расскажу, что было дальше.

По радио объявили: «Следующий номер нашей программы — Веселые Пекари! Высший класс жонглирования! Перемножение и деление степеней!»

На зеленое поле выбежали три буквы Цэ. Все они были в белых поварских колпаках, у каждой палка, а на палке кольца — похоже на детские пирамидки. Только там кольца разноцветные, одно другого меньше, а здесь одинаковые, золотистые, как толстенькие поджаристые бублики. У одного пекаря — два бублика, у другого — три. У третьего колец на палке не было.

Заиграла музыка.

Первый пекарь снял с палки верхнее кольцо и ловко метнул. Кольцо очертило в воздухе плавную дугу и угодило на пустую палку третьего пекаря. Вслед за первым кольцом туда же полетело второе. То же самое сделал другой пекарь, и вот уже у третьего пекаря на палке все пять колец, а первые два пекаря остались ни с чем.