Выбрать главу

Мы подумали, что пружинки в разных сосудах прижимают донышко с разной силой.

— Ничего подобного, — возразил директор, — пружинки всюду совершенно одинаковые.

— Как же так? — удивились мы. — Ведь сосуды вмещают разное количество жидкости. Чем больше налито кофе, тем больше будет его давление на дно?

— В том-то и суть закона Паскаля, что давление на дно не зависит от количества жидкости в сосуде! — воскликнул Пэ. — Оно зависит лишь от высоты сосуда.

— Проверим! — сказал Сева и решительно направился к самому большому сосуду. Он уже собирался нажать кнопку, чтобы налить себе кофе, но директор его остановил:

— Как? Вы хотите выпить сразу два литра? Но ведь это же очень вредно! Из этого сосуда мы отпускаем кофе на дом многосемейным. Прошу вас за столик. Сейчас я подам вам по чашечке кофе и большую вазу с треугольниками. Они тоже приготовлены по рецепту Паскаля.

Вот не думал, что можно питаться треугольниками! При слове «треугольник» мне сейчас же вспоминаются папины чертежные принадлежности.

Слава богу, треугольники в кафе «Абракадабра» вовсе не пластмассовые, а вафельные. И с самой разной начинкой: шоколадные, фруктовые, сливочные, ореховые, миндальные. Мы перепробовали все, какие были, и так увлеклись, что не заметили, как кафе заполнилось публикой. Скоро все столики были заняты. К этому времени у нас оставалось всего-навсего три вафли. Все взяли по одной и хотели уже прикончить, но нас остановила Таня.

— Смотрите, — сказала она, — на моем треугольнике какая-то надпись.

Тогда и мы посмотрели и увидели, что на вафлях написано: «Треугольник Паскаля».

— Что-то вроде штампа фабрики, — сообразил Сева. — Как у нас «Красный Октябрь» или «Фабрика имени Бабаева».

— А это тоже фабрика Бабаева?

Таня перевернула треугольник другой стороной. Там были выпуклые числа. Мы сличили свои вафли; числа на всех были одинаковые.

Сначала нам показалось, что они расположены беспорядочно. Только слева и справа в каждом ряду обязательно стоит единица. Приглядевшись, мы увидели, что числа определенным образом чередуются. Вот, например, в пятом ряду: 1, 4, 6, 4, 1. В седьмом: 1, 6, 15, 20, 15, 6, 1. Мы заметили также, что если спускаться по левой стороне треугольника, в первом наклонном столбце написаны единицы, во втором — натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9… Дальше числа стоят вразброд: 1, 3, 6, 10, 15, 21… А потом и того хуже: 1, 4, 10, 20, 35, 56…

— Одним словом, абракадабра! — проворчал Сева.

— Напрасно думаете, — заметила наша соседка, латинская буква Эс. — В этих числах есть определенный порядок, и разобраться в нем вовсе не трудно.

— Ну, где тут порядок? Где? — горячился Сева.

— Немножко наблюдательности — и вы перестанете спорить. Заметьте, что любое число в этом треугольнике равно сумме двух чисел, стоящих над ним.

— Правда! — сказала Таня. — Число 28 из девятого ряда равно сумме семи и двадцати одного, которые стоят над ним.

— А 126 из десятого ряда равно сумме семидесяти и пятидесяти шести, — сосчитал Сева.

— Вот видите! Никогда не торопитесь с выводами, — сказала Эс. — Часто то, что кажется неразберихой, на самом деле имеет строгий порядок. Надо только его обнаружить.

В том-то и задача каждого ученого.

— До чего интересный треугольник придумал Паскаль! — вздохнула Таня.

— О, в этом треугольнике еще много замечательного. Сложите числа каждого ряда. В первом ряду так и будет единица. Во втором?

— Два.

— В третьем?

— Четыре. В четвертом — восемь, в пятом — шестнадцать, затем — тридцать два, шестьдесят четыре…

— Слушайте! — закричал я. — Ведь это же разные степени числа два:

20 = 1;

21 = 2;

22 = 4;