Выбрать главу

До создания теории расширяющейся Вселенной попытки рассмотрения бесконечного пространства, равномерно в среднем заполненного звездами, наталкивались на любопытный парадокс. Он заключается в следующем. В бесконечной Вселенной, заполненной звездами, луч зрения рано или поздно встретит светящуюся поверхность звезды. В этом случае все ночное небо должно сиять, как поверхность Солнца и звезд.

Парадокс получил название фотометрического, и многие выдающиеся умы пытались его разрешить.

После создания теории расширяющейся Вселенной парадокс разрешился сам собой. В расширяющейся Вселенной для каждого наблюдателя есть горизонт видимости. Поэтому он видит конечное число звезд, весьма редко разбросанных в пространстве. Наш взор, как правило, скользит мимо них и вплоть до горизонта, не упираясь ни в одну звезду. Поэтому ночное небо между звездами — темное. К тому же жизнь звезд ограничена. Горизонт видимости делает для нас не столь существенной разницу между закрытым и открытым миром. В обоих случаях мы видим ограниченную часть Вселенной с радиусом около 15 миллиардов световых лет. В замкнутом мире свет не успевает обойти мир к настоящему времени, и, конечно, невозможно увидеть свет от нашей собственной галактики, обошедшей весь мир. Увидеть «собственный затылок» невозможно в замкнутой Вселенной. Даже за весь период расширения от сингулярного состояния до смены расширения сжатием свет успевает пройти только половину замкнутого пространства и лишь на фазе сжатия сможет закончить полный обход мира...

Горизонт видимости для каждого наблюдателя свой, где бы он ни был во Вселенной. Все точки однородной Вселенной равноправны. С течением времени горизонт каждого наблюдателя расширяется, к наблюдателю успевает доходить свет от все новых областей Вселенной. За 100, лет радиус горизонта увеличивается на одну стомиллионную долю своей величины.

Еще одно замечание. Вблизи, самого горизонта мы в принципе должны видеть вещество в далеком прошлом, когда плотность его была гораздо больше сегодняшней. Отдельных объектов тогда не было, а вещество было непрозрачным для излучения. К этому вопросу мы еще вернемся.

Глава III.

Горячая Вселенная

 

Физика начала расширения 

В предыдущих главах мы познакомились с механикой расширения Вселенной. Но механика не исчерпывает всего, что нас интересует. На разных этапах расширения Вселенной в ней протекали различные физические процессы. Мы знаем, что 15 миллиардов лет назад, в начале расширения, плотность материи во Вселенной была огромна. Естественно, что тогда протекали физические процессы, совсем непохожие на те, что мы наблюдаем сегодня. Они в прошлом определили сегодняшнее состояние мира и сделали возможным, в частности, существование жизни.

Физика процессов в начале расширения вызывает огромный интерес. Но можем ли мы что-либо сказать об этих процессах? Ведь речь идет буквально о первых мгновениях расширения, а все это происходило 15 миллиардов лет назад!

Оказывается, можем.

Дело в том, что происходившие в первые секунды с начала расширения процессы имели столь важные последствия для сегодняшней Вселенной, оставили столь явные «следы», что по ним можно восстановить характер самих процессов.

Важнейшими из них были ядерные реакции между элементарными частицами, проходившие при большой плотности. Такие реакции возможны лишь в самом начале расширения, когда плотности огромны. Конечно, никаких нейтральных атомов и даже сложных атомных ядер тогда не было, химические элементы образовались позднее в результате ядерных реакций. Но до этого, в еще более ранней Вселенной, был период, когда образовались сами элементарные частицы. Здесь речь идет уже о временах, исчисляемых невообразимо малыми мгновениями — 10 -43секунды, когда плотности были больше 10 93г/см 3. Такая плотность в невообразимое число раз больше плотности атомного ядра, которая «всего» 10 -15г/см 3. Наверное, столь обескураживающие числа вызывают невольную улыбку у читателя. Разве можно что-либо узнать о процессах в таких условиях, которые абсолютно невоспроизводимы в земных лабораториях?

Много лет назад, когда мы писали научную монографию с академиком Я. Зельдовичем и приводили в ней классификацию процессов, протекавших в подобных условиях чудовищных плотностей, мы вспомнили пародию Аркадия Аверченко: «История мидян темна и неизвестна, ученые делят ее тем не менее на три периода: первый, о котором ничего не известно; второй — о котором известно почти столько же, сколько о первом, и третий, который последовал за двумя предыдущими».

За прошедшие с тех пор почти двадцать лет физика шагнула далеко вперед, и теперь даже о процессах формирования элементарных частиц в расширяющейся Вселенной уже можно кое-что сказать.

Что же касается ядерных реакцией, происходивших с первой по трехсотую секунды после начала расширения, то о них можно поведать почти все с полной определенностью. Дело в том, что следствием ядерных реакций явилось образование химических элементов во Вселенной.

Расчет ядерных реакций дает возможность предсказать химический состав вещества, из которого формируются галактики, звезды, межзвездный газ. Сравнение предсказания с наблюдениями позволяет выявить эти реакции, а главное — выяснить физические условия, в которых они происходили. Мы оставим до дальнейших параграфов выяснение вопроса об экзотических процессах при 10 93г/см 3, и посмотрим сначала, как протекали ядерные реакции во Вселенной в первые секунды и к чему они привели.

Холодное или горячее начало? 

Есть две принципиальные возможности для условий, в которых протекало начало расширения вещества Вселенной. Это вещество могло быть либо холодным, либо горячим. Мы увидим, что следствия ядерных реакций при этом в корне отличаются друг от друга. Исторически первым еще в 30-е годы нашего века была рассмотрена возможность холодного начала. Тогда ядерная физика находилась еще в зачаточном состоянии, не было теории, которая могла бы надежно рассчитать ядерные реакции. В этих условиях принималось, что вещество Вселенной было сначала в виде холодных нейтронов.

Позже выяснилось, что такое предположение приводит к противоречию с наблюдениями.

Дело заключается в следующем. Нейтрон — нестабильная частица. В свободном состоянии от распадается за время около 15 минут на протон, электрон и антинейтрино. Поэтому в ходе расширения Вселенной нейтроны стали бы распадаться, стали бы возникать протоны. Возникший протон стал бы соединяться с еще оставшимся нейтроном, давая ядро атома дейтерия. Затем дейтерий стал бы соединяться с дейтерием и так далее. Реакция усложнения атомных ядер стала бы быстро идти и продолжаться до тех пор, пока не образовалась бы альфа-частица — ядро атома гелия. Более сложные атомные ядра, как показывают расчеты, практически не возникали бы. Таким образом, все вещество превратилось бы в гелий. Этот вывод резко противоречит наблюдениям. Известно, что молодые звезды и межзвездный газ состоят в основном из водорода, а не из гелия.

Таким образом, наблюдения распространенности химических элементов в природе отвергают гипотезу о холодном начале расширения Вселенной.

В 1948 году появилась работа Г. Гамова, Р. Альфера и Р. Хермана, в которой предлагался «горячий» вариант начальных стадий расширения Вселенной. Предполагалось, что в начале расширения температура вещества была весьма велика.