Указанные причины ведут к тому, что синтез элементов в начале расширения ограничивается только легкими элементами и заканчивается примерно через 300 секунд после начала расширения, когда температура падает ниже миллиарда градусов и энергия частиц уже недостаточна для ядерных реакций. Реакции, приведшие к образованию гелия, подобны тем, что происходят при взрыве водородной бомбы. Образование элементов тяжелее гелия происходит в звездах уже в нашу эпоху. В звездах вещество находится достаточно долго, и даже не очень быстрые реакции успевают пройти. Синтез элементов тяжелее железа происходит во взрывных процессах (во вспышках сверхновых звезд). Газ, прошедший стадию нуклеосинтеза в звездах, затем частично выбрасывается из них в окружающее пространство при медленном истечении с поверхности звезд и при взрывах. Из этого газа потом формируются звезды последующих поколений и другие небесные тела.
Вернемся к синтезу легких элементов в начале космологического расширения. Так как почти все нейтроны пошли на создание атомов гелия, то нетрудно подсчитать, сколько образуется гелия. Каждый нейтрон входит в состав ядра гелия-4 в паре с протоном, поэтому доля гелия по весу будет равной удвоенной концентрации нейтронов, то есть 30 процентов.
Итак, по истечении примерно пяти минут с начала расширения вещество состоит на 30 процентов из ядер атомов гелия и на 70 процентов из протонов — ядер атома водорода. Такой химический состав вещества остается в дальнейшем неизменным, вплоть до образования галактик и звезд, когда процессы неуклеосинтеза начинают идти в недрах звезд.
Подтверждают ли наблюдения вывод о химическом составе дозвездного вещества?
Сколько гелия в природе?
Гелия очень мало на Земле. Но это связано со специфическими свойствами этого элемента и с теми условиями, в которых формировалась и эволюционировала Земля. Гелий, будучи очень летучим и инертным газом, покинул вещество Земли. Однако астрономы видят его повсюду, хотя он и очень трудно наблюдаем обычными средствами спектрального анализа.
Его обнаруживают в горячих звездах, в больших газовых туманностях, которые окружают молодые горячие звезды, во внешних оболочках Солнца, в космических лучах — потоках частиц большой энергии, приходящих к нам на Землю из космоса. Гелий оказался в самых далеких от нас объектах Вселенной — квазарах.
Весьма примечательно, что где бы его ни обнаруживали, почти всегда его по массе около 30 процентов, а остальные 70 процентов составляет водород. Примесь других химических элементов невелика. Доля их меняется от объекта к объекту, а доля гелия удивительно постоянна.
Вспомним, что именно эти 30 процентов гелия предсказываются в первичном веществе теорией горячей Вселенной. Если большая часть гелия была синтезирована в первые минуты расширения Вселенной, а другие, более тяжелые элементы синтезируются значительно позже в звездах, то именно так и должно быть — гелия везде около 30 процентов, а других элементов по-разному, в зависимости от местных условий их синтеза в звездах и последующего выбрасывания газа из звезд в космическое пространство.
Во время ядерных реакций в звездах гелий тоже синтезируется. Но доля таким образом образовавшегося гелия мала по сравнению с образовавшимся в начале расширения Вселенной.
А нельзя ли все же предположить, что все наблюдаемые 30 процентов гелия образовались тоже в звездах?
Нет, это решительно невозможно. Прежде всего при образовании гелия в звездах выделяется большая энергия, заставляющая звезды интенсивно светить. Если бы такое количество гелия было в прошлом образовано в звездах, излученный ими свет с высокой температурой должен был бы наблюдаться во Вселенной, чего на самом деле нет.
К этому можно добавить, что наблюдения самых старых звезд, которые заведомо формировались из первичного вещества, показывают, что в них гелия тоже 30 процентов. Значит, практически весь гелий Вселенной был синтезирован в самом начале расширения мира.
Так химический анализ вещества сегодняшней Вселенной дает прямое подтверждение правильности нашего понимания процессов, которые протекали в первые секунды и минуты после начала расширения всего вещества.
Триста тысяч лет эры фотонной плазмы и наша эра
В первые 100 секунд расширение в расширяющейся плазме происходил еще один вид процессов. Дело в том, что по прошествии 10 секунд от сингулярного состояния температура во Вселенной упала до нескольких миллиардов градусов. До этого во Вселенной было много электронов и позитронов, рождавшихся при энергичных столкновениях частиц. Теперь энергия столкновения уже недостаточна для их рождения. Электроны и позитроны, сталкиваясь друг с другом, аннигилируют, превращаясь в фотоны. Вся энергия, которая содержалась в электронах и позитронах, переходит в фотоны реликтового излучения.
Проходят минуты, температура продолжает падать с расширением. Закончилась аннигиляция электронов и позитронов, затухли ядерные реакции в веществе.
Это были последние активные процессы, происходившие в горячей ранней Вселенной. В ней стало слишком холодно (холоднее миллиарда градусов!), и бурные процессы стали невозможны.
Закончился буйный фейерверк жизни молодой Вселенной, и наступил длительный период спокойствия. Он продолжался около 300 тысяч лет.
Напомним, что в этот период расширяющаяся плазма все же очень горяча и полностью ионизована. Она непрозрачна для реликтового излучения, которое по массе превосходит непрозрачную плазму. В этой смеси плазмы и света имеются небольшие колебания, которые можно назвать «фотонным звуком», так как упругой силой, их вызывающей, является давление света.
Вот и все интересное, что было в эту «тихую» эпоху.
Так продолжалось до того времени, когда температура упала примерно до четырех тысяч градусов. Эта температура уже достаточно низка, и ионизованная плазма начинает превращаться в нейтральный газ. Казалось бы, событие это не столь уж важное, но оно явилось поворотным в дальнейшей судьбе Вселенной.
До этого момента ионизованный газ был совершенно непрозрачен для реликтового излучения. После превращения газа (а это в основном водород) в нейтральный, он практически совершенно прозрачен для подавляющей части фотонов реликтового излучения. С этого момента реликтовое излучение отделилось от вещества. Вся Вселенная для него прозрачна. Фотоны распространяются сквозь вещество, которое становилось все более разреженным из-за расширения и все более холодным, практически не поглощаясь.
Ну и почему же это так важно? — может спросить читатель. Дело в том, что только теперь из этого остывшего нейтрального газа могут формироваться небесные тела.
За эрой фотонной плазмы наступает эра формирования структуры Вселенной.
Можно считать, что началом современной эпохи в истории Вселенной был процесс образования отдельных гигантских по размерам комков в первоначальном, почти однородном веществе, комков, из которых впоследствии возникли галактики и их скопления. Образование комков происходило под действием сил гравитации, и весь процесс получил название «гравитационной неустойчивости».