* * *
ОБЫЧНОЕ РАССТОЯНИЕ
Понятие координатного пространства предполагает существование фиксированного расстояния между двумя точками в этом пространстве, так называемого обычного расстояния. Например, для двух точек р = (x1, х2, х3) и q = (y1, у2, у3) в трехмерном координатном пространстве R3 обычное расстояние задается выражением
что делает наш мир трехмерным евклидовым пространством. Именно это расстояние мы используем в нашей повседневной жизни. Конечно, это понятие расстояния легко обобщается на n-мерное координатное пространство.
Расстояние (С) между двумя точками (x1, y1) и (х2, у2) на плоскости определяется по теореме Пифагора, так как С является гипотенузой прямоугольного треугольника со сторонами А = у2 — у1 и В = х2 — х1
Несмотря на кажущуюся простоту этих идей, потребовалось много времени, чтобы привыкнуть к ним и начать применять их на практике. Математики, другие ученые и философы вели жаркие споры о смысле и реальности пространств более высокой размерности. Например, в «Началах» Евклида определяется, что точка не имеет размерности, прямая линия имеет одну размерность (длину), плоскость — два измерения (длину и ширину), а тело в пространстве — три измерения (длину, ширину и высоту). Но Аристотель в своей работе «О небе» утверждал, что четырехмерного пространства не существует: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и кроме них нет никакой другой величины, так как три измерения суть все измерения, и величина, которая делима в трех измерениях, делима во всех измерениях».
Клавдий Птолемей (ок. 100–170 н. э.) в своей работе «О расстоянии» впервые доказал, что четвертого измерения не существует. К сожалению, эта книга не сохранилась до наших дней, мы знаем о ней благодаря греческому математику и философу Симпликию Киликийскому (490–560). Фактически Птолемей говорил, что если рассмотреть три перпендикулярные прямые, то невозможно провести четвертую прямую, перпендикулярную к трем другим. Таким образом, четвертого измерения не существует. Однако Птолемей лишь доказывает, что невозможно воспроизвести четыре измерения в нашем трехмерном пространстве.
Позже, при попытке дать геометрическую интерпретацию алгебраических уравнений, возникла идея, что могут существовать пространства более высоких размерностей, но некоторые математики отзывались об этой возможности как о «неестественной». Английский математик Джон Валлис (1616–1703) в своей работе «Алгебра» назвал четвертое измерение «чудовищем, возможным в природе не более, нежели химера или кентавр. Длина, ширина и толщина полностью заполняют пространство. Даже фантазия не может описать, как четвертое измерение может существовать наряду с этими тремя».
Были и те, кто пытался принять существование четвертого измерения на духовном уровне. Например, английский философ Генри Мор (1614–1687) утверждал, что души имеют четыре измерения. Эта идея, как мы увидим в пятой главе, стала очень популярной. В этой связи немецкий философ Иммануил Кант (1724–1804) писал: «Наука обо всех этих возможных видах пространства, несомненно, представляла бы собой высшую геометрию, какую способен построить конечный ум… Если возможно, чтобы существовали протяжения с другими измерениями, то весьма вероятно, что Бог где-то их действительно разместил. Поэтому подобные пространства вовсе не принадлежали бы к нашему миру, они должны были бы составлять особые миры».
В одной из своих работ Кант утверждал, что левая рука является зеркальным отражением правой и что мы не можем идеально совместить руку с ее отражением. Однако Август Фердинанд Мёбиус (1790–1868) впервые заметил, что при вращении правой руки в гипотетическом четырехмерном пространстве она может стать своим зеркальным отражением — левой рукой, вернувшись в трехмерное пространство.