Кроме того, Квадрат мог бы шпионить из Спейсландии за своими тюремщиками, оставаясь незамеченным. Если бы он захотел пить, никто не смог бы помешать ему опуститься в соседний дом, не открывая дверей, через третье измерение. И если бы Квадрат захотел (хотя мы знаем, что он был честным существом), он мог бы украсть драгоценности из дома жреца опять же через третье измерение, и никто бы его не увидел. А если бы жрец неожиданно вернулся, Квадрату пришлось бы просто подняться вверх, чтобы остаться незамеченным.
А если внук Квадрата Шестиугольник вдруг подавился бы конфетой, его дедушка легко смог бы спасти ему жизнь, поднявшись в третье измерение и вынув конфету из горла внука. Аналогично врач в четвертом измерении легко сделал бы нам операцию без хирургического вмешательства.
Таким же образом, хотя это и кажется удивительным, можно через четвертое измерение разнять два сцепленных металлических кольца или развязать узел, как в стихотворении Максвелла, послужившем эпиграфом к этой главе.
В нашем пространстве невозможно разнять металлические кольца или развязать трилистный узел, хотя из четвертого измерения сделать это очень просто.
Вот замечательная идея для сюжета рассказа. Человек, который может перемещаться в четвертом измерении, решает ограбить банк и таким образом совершает идеальное преступление. Убегая через гиперпространство, он роняет несколько банкнот, и они остаются в нашем мире, где их находит детектив, расследующий это дело. В изумлении детектив замечает, что изображение на банкнотах зеркально перевернуто. Детектив пытается понять, что случилось с банкнотами и как это связано с ограблением банка.
Зеркально перевернутые изображения на банкноте, после того как она побывала в четвертом измерении.
Итак, как можно определить, что человек побывал в четвертом измерении или что флатландец путешествовал в Спейсландию?
Вернемся еще раз к примеру с Флатландией. Если мы повернем Квадрат вокруг одной из его осей симметрии, как показано на рисунке ниже, то есть поднимем его из плоскости и развернем в третьем измерении, то мы получим его зеркальный образ.
Мы можем провести этот эксперимент, подняв со стола вырезанный из бумаги квадрат, повернув его в пространстве и снова возвратив в его плоскую вселенную.
Предположим, голова всех жителей Флатландии, в том числе и Квадрата, находится с северной стороны, их глаза и рот — с восточной стороны тела, а легкие — с западной. Если мы повернем Квадрат в пространстве, то мы получим его зеркальное изображение. Глаза и рот будут с западной стороны, а легкие — с восточной.
Другие жители Флатландии, встретив такой Квадрат, сразу поймут, что он побывал в третьем измерении.
Квадрат, повернутый в третьем измерении. В результате получилось его зеркальное изображение.
Теперь предположим, что в четырехмерном пространстве поворачивают человека вокруг плоскости, которая пересекает его сверху вниз (заметим, что вращение происходит вокруг плоскости, а не вокруг прямой линии). В результате человек останется самим собой, но зеркально отображенным. То, что было слева, например сердце, теперь будет справа. В самом деле, если трехмерное тело вращается в четвертом измерении, оно меняет ориентацию. Например, раковина улитки, закрученная по часовой стрелке, теперь будет закручена в противоположном направлении. То же самое произойдет с правосторонним объектом, который превратится в левосторонний.
Раковина улитки после ее путешествия через четвертое измерение.
Когда мы смотрим в зеркало, мы видим образ того «человека», который бы вернулся в наш мир после поворота в четвертом измерении. Если мы поднимаем правую руку, наш образ в зеркале поднимает левую.
А существует ли зеркало, которое показывает наше настоящее, а не зеркальное изображение? Да, если мы поместим два зеркала под углом друг к другу, отражение первого отражения и будет истинным представлением нашей внешности. Это изображение будет таким, как если бы мы повернулись вокруг линии пересечения зеркал. Если мы поднимем правую руку, то наше второе отражение в зеркале также поднимет правую руку, что мы не привыкли видеть в зеркалах.