В середине XIX в. идея, похожая на миф о пещере, появилась в коротком рассказе немецкого психолога и физика Густава Фехнера (1801–1887) «Пространство имеет четыре измерения», в котором человек-тень проецируется на экран с помощью проектора.
Схематичное изображение платоновского мифа о пещере.
* * *
«ФЛАТЛАНДИЯ» КАК ИСТОЧНИК ВДОХНОВЕНИЯ
«Флатландия» приобрела статус популярной классики, что вдохновило многих авторов на создание похожих произведений. Дионис Бюргер (1892–1987) написал «Сферландию, или Роман об искривленном пространстве и расширяющейся Вселенной с иллюстрациями автора, Шестиугольника» как продолжение «Флатландии» примерно с таким же относительно простым сюжетом. Главный герой романа — Шестиугольник, внук Квадрата, — живет в более равноправном обществе. При измерении очень большого двумерного треугольника выяснилось, что сумма его углов больше 180°. Это позволило предположить, что на самом деле двумерный мир является не плоскостью, а поверхностью сферы. Даже Иэн Стюарт (р. 1945), один из самых известных современных популяризаторов математики, не удержался от соблазна посетить «Флатландию»», создав ее аннотированную версию и даже продолжение «Флащеландию», то есть Флатландию, только в большей степени. Главный герой книги — Виктория Лейн, потомок Квадрата из классического произведения Эбботта, — исследует более современные понятия, такие как фрактальная размерность, скрытые пространственные измерения, гиперболическая геометрия, квантовая механика, теории относительности, сингулярности пространства-времени и путешествия во времени.
Математик Чарльз Хинтон, который уже в начале 1880-х гг. написал серию статей о двумерном мире и существах, населяющих его (мы расскажем о нем подробнее в четвертой главе), является автором романа под названием «Случай во Флатландии, или Как двумерные люди обнаружили третье измерение». Это не просто совпадение, что книги Хинтона и Эбботта были написаны примерно в одно и то же время.
В плоской вселенной Хинтона планеты-круги вращаются вокруг круга-солнца.
Одна из этих планет, Астрия, населена двумя расами треугольников: цивилизованные юнифы создали науку и технику, а варварские скифы являются воинами. В этой книге Хинтон в большей степени, чем Эбботт во «Флатландии», затрагивает вопросы науки и техники. В частности, он описывает физику двумерного мира и некоторые механические устройства. И конечно, в романе затрагиваются и социальные вопросы: автор повествует об отношениях между молодой леди и простым пролетарием. Дядя девушки является единственным человеком Астрии, который верит в существование трехмерного пространства.
Иллюстрация из книги Чарльза Хинтона «Случай во Флатландии». Действие разворачивается на планете Астрия, представляющей собой плоский круг и населенной треугольниками. На западе живут скифы, а на востоке — юнифы.
* * *
ОТ «ФЛАТЛАНДИИ» К «ПЛАНИВЕРСУМУ»
Использование компьютеров для имитации «Флатландии» привело к появлению в 1984 г. книги «Планиверсум. Виртуальный контакт с двумерным миром». Ее автор, математик Александр Дыодни, родился в Канаде в 1941 г. Он рассмотрел всевозможные аспекты двумерного мира, аналогичного описанному Хинтоном. Среди них — политика, география, архитектура, физика, химия, биология, культура, игры и даже что и как обитатели этого мира едят.
Глава 2. Что такое размерность?
Я знаю, что многие… считают, что обобщенное понятие [четырехмерного] пространства является не более чем формой алгебраической абстракции, но то же самое можно сказать и о нашей идее бесконечности в алгебре, или о невозможных линиях в геометрии, или линиях, которые образуют угол в 0 градусов, хотя никто не будет оспаривать пользу этих понятий.
Джеймс Джозеф Сильвестр. Призыв к математикам (1869)
В этой главе рассматриваются понятия размерности и многомерных пространств.
Термин «размерность» широко используется не только в науке и технике, но и в повседневной жизни. Это слово в разных смыслах часто встречается в газетах и в Интернете. Например, выражение «GPS-навигация в трехмерном пространстве» использует понятие трех измерений, которые необходимы устройству GPS для определения положения объекта на земном шаре: широты, долготы и высоты. Вместе с этим выражение «размеры коробки 30 см (длина) х 15 см (ширина) х 15 см (высота)» означает величину предмета. Мы можем даже найти что-то вроде выражения «культурная размерность интернета», которое можно интерпретировать метафорически, имея в виду всю многогранность интернета и нашей культуры в целом.