Выбрать главу

Исследователей заинтересовал и другой момент. Маятник помогает изучать работу сердца при нормальном дыхании, но ведь при плавании и некоторых спортивных упражнениях необходима задержка дыхания после вдоха. Как это влияет на работу сердца и жизнедеятельность организма? Уравнение маятника здесь уже помочь не могло. Нужно было искать новую модель.

И ученые вспомнили, что в промышленности часто применяются электронные системы, в которых искусственно производится задержка сигнала. Генератор выработает электрический импульс, а специальная схема его чуть попридержит, пока не понадобится передать его в рабочий агрегат. Каковы же были удивление и радость физиологов, когда они убедились, что эти схемы задержки могут моделировать влияние задержки дыхания. Исследовали сердечную деятельность пятидесяти человек и убедились, что новая модель удивительно точно отображает связь сокращения сердечной мышцы с процессом дыхания. А так как схемы автоматической задержки были уже хорошо изучены радиоспециалистами, то им совместно с математиками и физиологами удалось найти математическое уравнение, достаточно полно описывающее сердце и его нервные регуляторы.

Эти модели, авторами которых являются советские инженеры — Кухтенко и Грдина, одинаково хорошо описывают работу промышленных систем автоматического регулирования и действие искусственного сердца, позволяющего хирургам в необходимых случаях останавливать сердце больного, заменяя его автоматом. Такие аналоги наглядны, доступны для экспериментирования и, главное, теоретически обоснованны, и на них можно положиться, когда речь идет о вопросах, связанных с сердцем.

Увы, этими вопросами ограничена сфера их применения. Когда понадобилось моделировать работу других органов, кибернетикам пришлось начинать сначала и искать новые аналоги. Постепенно они подобрались и к легким и к почкам и общими усилиями нашли модели для изучения их работы.

ИГРА В ЖМУРКИ

Когда ученым удается сделать хоть один шажок в исследовании работы мозга — это всегда сенсация, так важно это и для медицины, и для психологии, и для педагогики.

Слишком долго господствовало мнение, что психическая и умственная деятельность человека — это особый мир, недоступный объективному изучению, это «мир в себе». Немецкий ученый Людвиг считает, что «изучать мозг методами точной науки — это все равно что изучать механизм часов, стреляя в них из ружья». И некоторые наши физиологи увлекались этим красивым сравнением, забывая слова своего соотечественника. Сеченов говорил об этом иначе: «Должно прийти время, когда люди будут в состоянии так же легко анализировать проявление деятельности мозга, как анализирует теперь физик музыкальный аккорд или явления, представляемые свободно падающим телом».

И еще говорил Сеченов: «Мы знаем, что рукою музыканта вырываются из бездушного инструмента звуки, полные жизни и страсти, а под рукою скульптора оживает камень. Ведь и у музыканта и у скульптора рука, творящая жизнь, способна делать лишь механические движения, которые, строго говоря, могут быть подвергнуты анализу и выражены формулой».

Как показывает поучительная история кибернетики, прогресс современной науки определяется в значительной мере ее математизацией. Это относится и к биологии и к физиологии. Мысли Сеченова о дружбе биологии и математики, которые в его время считались безумными, сегодня свежи и актуальны.

Сеченов был не только физиологом, он был прекрасным инженером, поэтому не удивительно, что он ждал и желал объединения этих наук. Объединение произошло в наши дни в лоне кибернетики.

Движимые формулой, электронно-вычислительные машины имитируют умственные действия человека. Они оказались замечательными моделями не только для изучения работы памяти, нервной системы, расстройств узлов самоуправления организма, но и умственной деятельности. Составляя программы для математических машин, ученые в ряде случаев сознательно предписывают машине порядок действий, свойственный человеку. Так, программа перевода в определенном смысле совпадает с действиями человека, не знающего иностранного языка, но имеющего словарь и знакомого с основными правилами перевода. Программа решения сложнейших задач высшей математики, составленная для машины, в основных чертах похожа на программу, составленную для вычислителя, не знающего высшей математики, но умеющего работать с арифмометром.

Но вот при изучении электронной машины для слепых, читающей печатный текст вслух, было обнаружено, что в действии ее блоков имеется много общего с процессами образования связей в тех участках головного мозга, которые управляют зрительными восприятиями. Конструктор машины даже не стремился к получению такого сходства. Оно явилось неизбежным результатом общности ряда закономерностей работы электронной вычислительной машины и человеческого мозга.

Естественно, возник, не мог не возникнуть, вопрос: а как далеко заходит эта общность? Как близко могут подойти друг к другу модель и оригинал? На этот вопрос пока нет исчерпывающего ответа. Это одна из тех проблем, которая уточняется и углубляется вместе с познанием. Конечно, ставя такой вопрос, используя новые модели, ученые ни на секунду не забывают, что, несмотря на многие аналогии между человеческим мозгом и электронной вычислительной машиной, им свойственны глубокие различия.

Человеческий мозг содержит бесчисленное количество рефлекторных связей, рождающих разнообразные виды творчества.

Структура мозга — это неповторимое, случайное сплетение нервных клеток. Но это отсутствие порядка, этот хаос, в сочетании с огромным разнообразием возможных связей между отдельными клетками, порождают замечательную слаженность работы человеческого организма, недоступную машине, в строении которой царит идеальный порядок.

К сожалению, детально сравнивать электронные вычислительные машины и мозг человека невозможно, ибо конструктор знает о машине все, тогда как физиологи знают о мозге и нервной системе слишком мало.

И в это решили вмешаться кибернетики.

ТАЙНА АЛЬФА-РИТМА

Вечером 2 июля 1962 года большой лекционный зал Московского политехнического музея был переполнен. Люди стояли в проходах. Многие сидели на ступеньках амфитеатра. Пришедшие позднее заполняли коридоры лектория, а многие, по-цыгански скрестив ноги, сидели прямо на сцене.

Выступал Норберт Винер. Он посетил СССР незадолго до смерти. Его новая работа поражала мощью интеллекта и прозорливостью. Он говорил о своих исследованиях биопотенциалов мозга.

— Электроэнцефалограммы, — рассказывал он слабым голосом, — уже давно применяются для изучения работы мозга, для диагностики опухолей мозга и других заболеваний. Но крайне малая величина этих биопотенциалов не позволяла до сих пор получать таким путем достаточно подробные сведения о работе нервной системы. Мы решили использовать для изучения биопотенциалов мозга особый метод математического анализа, применяемый для изучения случайных процессов или слабых сигналов на фоне помех. Ведь электроэнцефалограмма представляет собой не что иное, как запись очень слабых сигналов от работающего мозга, полученных на фоне сильных помех.

Примененный Винером метод был прост и остроумен. Электроэнцефалограмма записывается не на бумагу или фотопленку, как это делается в поликлиниках, а на магнитную ленту при помощи магнитофона, присоединяемого к электроэнцефалографу. Затем лента с записью пропускается через специальный магнитофон, снабженный двумя действующими одновременно «читающими» головками. Сигналы, получающиеся в этих головках, перемножаются при помощи специальной радиотехнической схемы. В результате такой операции Винер получил важную характеристику изучаемого процесса, известную у математиков под названием «функции корреляции». Она подчеркивает суть явления, подавляя шумы.

В хаотических с первого взгляда записях электроэнцефалографа вдруг неожиданно проступил силуэт периодического сигнала, педантично возникающего точно десять раз в секунду.

О присутствии в мозгу этого сигнала ученые раньше ничего не знали. Его назвали альфа-ритм. Оказалось, он играет большую роль в человеческом организме.