Теперь, если мы опять вернемся к треугольным и квадратным числам, мы легко убедимся в том, что наряду с закономерными соотношениями, включающими операции сложения, существуют закономерные соотношения на основе умножения.
Вернемся в третью главу, где я рассказывал вам о том, как определить площадь квадрата. Надеюсь, вы помните, что площадь квадрата со стороной, равной 1 (например, одному сантиметру, одному метру или любой другой единицы измерения длины), равна 1 × 1, то есть единице площади, одному квадратному сантиметру, одному квадратному метру или квадрату любой другой единицы измерения длины. Площадь квадрата со стороной 2 равна 2 × 2 = 4. Теперь, если мы рассмотрим серию квадратов со сторонами, равными 1, 2, 3, 4, 5, 6, 7 и так далее, то их площади будут равны соответственно 1, 4, 9, 16, 25, 36, 49 и так далее.
Сопоставив этот ряд с теми рядами, которые мы рассматривали в предыдущих разделах этой главы, вы увидите, что перед нами ряд квадратных чисел, который записан не в прежнем виде 1, 1 + 3, 1 + 3 + 5, 16, 1 + 3 + 5 + 7 и так далее, а в виде произведения 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 7 × 7 и так далее.
Теперь рассмотрим куб, то есть трехмерную фигуру, у которой есть длина, ширина и высота, причем все они равны между собой. Примером кубов для вас могут быть кубики для какой-нибудь настольной игры или игральные кости. Объем куба вычисляется перемножением длины, ширины и высоты. Доказать это можно с помощью той же методики, которой мы пользовались в третьей главе, вычисляя площадь квадрата или прямоугольника, когда перемножали длину и ширину.
Объем куба со стороной, равной единице, равен соответственно одной кубической единице (1 × 1 × 1 = 1). Объем куба со стороной, равной 2, равен соответственно 2 × 2 × 2 = 8, или восьми кубическим единицам. Можно продолжить такие вычисления, и тогда мы получим, что объем кубов со сторонами 1, 2, 3, 4, 5, 6, 7 и так далее равен соответственно 1, 8, 27, 64, 125, 216 и так далее. Эти числа можно представить в виде 1 × 1 × 1; 2 × 2 × 2; 3 × 3 × 3; 4 × 4 × 4; 5 × 5 × 5; 6 × 6 × 6 и так далее.
И квадраты, и кубы легко представить, так как мы часто встречаем такие фигуры в обыденной жизни. Но можно отойти от геометрических представлений и составить числовой ряд, где каждое число является произведением четырех, пяти, или шести, или любого другого количества одинаковых сомножителей.
Последовательное перемножение одного и того же числа на себя самое является операцией, которая очень часто используется в математике. В свое время, когда мы рассматривали повторные многократные операции сложения, мы ввели новое понятие и новую математическую операцию — умножение. Например, мы заменили 6 + 6 + 6 + 6 на 6 × 4. Точно так же часто используемую операцию умножения 6 × 6 × 6 × 6 можно кратко записать при помощи нового символа, степенного выражения: 64.
Что означает 64? Только то, что мы перемножаем число 6 на само себя четыре раза, или 6 × 6 × 6 × 6. Число 105 — это 10 × 10 × 10 × 10 × 10, а 32 — это 3 × 3.
Можно записать ряд квадратов чисел (12, 22, 32, 42, 52, 62, 72 и так далее) и ряд кубов чисел (13, 23, 33, 43, 53, 63, 73 и так далее).
Число, которое набрано мелким шрифтом справа вверху от основного числа, называется показателем степени, или экспонентой. Число, содержащее экспоненту, называется экспоненциальным числом. Число, которое возводят в степень, то есть умножают само на себя, называют основанием экспоненциального числа. В выражении 64 число 6 — это основание, 4 — экспонента.
Повторное перемножение числа на самое себя называется возведением в степень. Так, 64 — это шесть в четвертой степени, аналогично 105 — это десять в пятой степени. Можно также сказать просто: шесть в четвертой или десять в пятой. 32 и 33 можно назвать как три во второй или три в третьей, но чаще, следуя греческой традиции, их называют три в квадрате или три в кубе.
Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.
Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 — это 4 × 4, а 64 — это 4 × 4 × 4. То есть 16 на 64 = 4 × 4 × 4 × 4 × 4, что также равно 1024.