Но если оба числа, + 2 и -2, являются корнями квадратными из 4, то какое же число будет корнем квадратным из -4? Конечно, +2 × -2 = -4, но +2 и -2 — это не одно и то же. Так что перемножение этих двух разных чисел не является возведением в квадрат.
Очевидно, что среди положительных и отрицательных чисел не существует такого, которое, будучи возведено в квадрат, дало бы -4 или любое другое отрицательное число, но давайте проявим упорство, попробуем найти подходящее число и решить эту задачу.
Для начала упростим задачу, насколько это возможно. Любое число, скажем √64 , можно разбить на множители и записать в виде √(16×4). Это выражение можно дальше преобразовать в √16 × √4. При этом окончательный ответ не меняется. √64 = 8 и √16 × √4 = 4 × 2 = 8.
Мы можем решить еще сколько угодно подобных примеров, и всегда это правило будет справедливо. То есть если число разбить на множители, то квадратный корень из этого числа будет равен произведению квадратных корней сомножителей. Это утверждение справедливо и для иррациональных чисел. Например, √15 = √5 × √3. Можно заглянуть в специальные таблицы и найти там -√15, равный 3,872983.
В свою очередь, √5 = 2,236068, √3 = 1,732051 (конечно, это приближенные значения). При перемножении 2,236068 × 1,732051 получаем 3,872983, то есть мы доказали, что √15 = √5 × √3.
Отлично, тогда мы можем предложить такую схему. Любое отрицательное число равно произведению соответствующего положительного числа на -1. Другими словами, -64 = 64 × (-1); -276 = 276× (-1); -1,98 = 1,98 × (-1) и так далее.
Квадратный корень из любого числа, например из -172, можно разбить на сомножители: √-172 = √172 × √-1. Следовательно, если мы найдем квадратный корень из -1, мы сможем найти квадратный корень любого отрицательного числа. Но тут мы опять сталкиваемся с неразрешимой, казалось бы, задачей:
1 × 1 = 1; (-1) × (-1) = 1.
Не существует такого числа, которое при перемножении на себя самое дало бы -1.
Следовательно, единственное, что мы можем сделать, — это придумать такое число, Мы можем договориться, что символ # обозначает, что # × # равно отрицательному числу. Тогда #1 × #1 = -1. Это выражение справедливо по определению, а поскольку оно не противоречит ни одному из математических постулатов, то нет никаких оснований, чтобы его не использовать.
Разумеется, такое число является нереальным, воображаемым. Мы легко можем себе представить, что такое +$1 и -$1. +$1 — это доход в $1, а -$1 — это расход в $1. Но как представить себе #1$? Математики, которые первыми стали работать с этими новыми числами, назвали их мнимыми. В отличие от мнимых чисел обычные отрицательные и положительные числа, как рациональные, так и иррациональные, называются действительными.
Математики не стали изобретать для этих чисел нового знака, наподобие знака + или -, хотя мне кажется, это было бы целесообразно. Вместо этого они обозначили √-1 буквенным символом «i». Другими словами, i × i = -1, или √-1 = i. Кроме того, -i × -i также равняется i2, то есть -1. Мы также должны записать √-1 = -i.
И последнее, -i × i = -i2 = -(-1) = 1.
Теперь мы легко можем извлечь квадратный корень из любого отрицательного числа.
Величина √-4 равна √4 × √—1, или ±2 × i, что можно просто записать как ±2i.
Точно так же величина √-64 равна √64 × √-1, или ±8 × i, что можно просто записать как ±8i, а величина √-15 равна √15 × √-1, или ±3,8729832 × i, что можно просто записать как ±3,8729832i.
Однако теперь у нас есть отличный повод для возмущения. Что бы там ни говорили, как бы ни уславливались, совершенно непонятно, что такое эти мнимые числа, как можно их себе представить.
На самом деле такое число должно обозначать то, что мы ему приписали, то, о чем мы условились заранее. Не надо забывать, что числа — это изобретение человека и их цель — облегчить познание Вселенной, а со своими созданиями человек вправе поступать так, как считает нужным.
Вспомним, что у древних греков не было отрицательных чисел. Для них -1 была не менее таинственна и непонятна, чем для нас √—1, когда мы приступили к изучению мнимых чисел. Обратившись к отрицательным числам, мы использовали числовую ось, на которой вверх от нулевой отметки располагались положительные числа, а вниз — отрицательные (см. главу 2).
Такая схема сработала в прошлый раз, попробуем использовать ее и сейчас. Проведем через нулевую отметку еще одну линию, перпендикулярную первой числовой оси. Справа отложим через равные интервалы + li, +2i, +3i, +4i, +5i, +6i, …, а слева -li, —2i, -3i, —4i, —5i, -5i… Мы получили две числовые оси:
Например, вместо знаков «+» и «-» мы можем использовать буквенные обозначения сторон света, как на компасе. Условимся, что положительные действительные числа — это N-числа, отрицательные действительные числа — это S-числа, положительные мнимые числа — это W-числа, а отрицательные мнимые числа — это Е-числа.