Выбрать главу

Хотя дроби постоянно уменьшаются, эта последовательность также является бесконечной, ведь любую сколь угодно малую дробь из этой последовательности можно разделить на два и получить еще меньшую. Знаменатель дроби увеличивается бесконечно, но сама дробь никогда не достигнет нуля, поскольку для этого надо, чтобы знаменатель достиг бесконечности, а это невозможно.

А теперь давайте выясним, чему равна сумма этой бесконечной последовательности. С точки зрения простого здравого смысла может показаться, что сумма такой последовательности должна быть бесконечно большой величиной. Но мы уже знаем, насколько обманчив бывает так называемый «здравый смысл».

Сначала к 1/2 прибавляем 1/4, получаем 3/4, затем к 3/4 прибавляем 1/8, получаем 7/8, затем к 7/8 прибавляем 1/16, получаем 15/16, прибавляем 1/32, получаем 31/32 и так далее. Обратите внимание, что чем больше членов последовательности мы добавляем, тем ближе сумма последовательности приближается к 1. Когда мы складываем первые два члена ряда, до единицы остается 1/4, прибавляем следующий член, и до единицы остается 1/8, и так далее можно дойти до одной миллионной или до одной триллионной, но единица так никогда и не будет достигнута.

Математики так формулируют это положение: «Сумма бесконечной последовательности дробей 1/2, 1/4, 1/8… приближается к единице, которая является пределом суммы данной последовательности».

Это пример сходящейся последовательности, то есть последовательности, состоящей из бесконечного числа членов, сумма которых приближается к какому-либо конечному числу как к пределу.

Еще в Древней Греции математики обнаружили сходящиеся бесконечные последовательности, но они были столь поражены тем, что количество членов последовательности бесконечно, что даже не могли предположить, что сумма таких последовательностей может быть не бесконечной величиной. Греческий математик и философ Зенон поставил ряд задач, называемых парадоксами, которые, казалось бы, опровергают совершенно очевидные постулаты. Один из его парадоксов служил доказательством того, что движение в принципе невозможно. Эти парадоксы считались неразрешимыми на протяжении столетий, до тех пор, пока не выяснилась правда о сходящихся бесконечных последовательностях.

Самый знаменитый парадокс Зенона называется «Ахилл и черепаха». Древнегреческий герой Ахилл славился как прекрасный бегун, а черепаха известна тем, что передвигается чрезвычайно медленно. Тем не менее Зенон продемонстрировал, что Ахилл никогда не сможет догнать черепаху в соревновании по бегу, если изначально у черепахи будет преимущество.

Предположим, что Ахилл бегает в десять раз быстрее черепахи, но к началу соревнований у черепахи будет преимущество в 100 ярдов. В несколько прыжков Ахилл преодолеет расстояние в 100 ярдов, но за это время черепаха, которая двигается в десять раз медленнее Ахилла (что очень неплохо для черепахи), пройдет 10 ярдов. Ахилл пробегает и эти 10 ярдов, но черепаха удаляется от него на 1 ярд. Тогда Ахилл пробегает один ярд, но черепаха удаляется от него на 1/10 ярда, и так далее до бесконечности.

Вот видите, что происходит. Ахилл продолжает движение, но и черепаха движется, и Ахилл не может ее догнать. И более того, повторяя это рассуждение для другого первоначального разрыва между черепахой и Ахиллом, мы можем сказать, что, каким бы малым ни было изначальное преимущество черепахи, будь это один фут или один дюйм, ничего не изменится. Ахилл никогда не сможет добиться никакого преимущества, а это, в свою очередь, означает невозможность движения вообще.

Конечно, вы прекрасно знаете, что Ахилл может догнать черепаху и движение возможно, следовательно, доказательство Зенона несет в себе противоречие, то есть является парадоксом.

А теперь рассмотрим подробно задачу Зенона. Где ошибка в его рассуждениях? Предположим, Ахилл бежит со скоростью 10 ярдов в секунду, а черепаха движется со скоростью 1 ярд в секунду. Ахилл пробегает первые 100 ярдов за 10 секунд. За это время черепаха проходит 10 ярдов. Ахилл преодолевает 10 ярдов за одну секунду, а черепаха за это время проходит 1 ярд. Ахилл преодолеет этот ярд за 0,1 секунды, а черепаха удалится от него на 0,1 ярда.

Иными словами, время, которое нужно Ахиллу для того, чтобы догнать черепаху, представляет собой убывающую последовательность 100, 10, 1, 0,1, 0,01, 0,001, 0,0001, 0,00001…

Сколько времени понадобится Ахиллу для того, чтобы преодолеть бесконечную последовательность уменьшающихся расстояний? Зенон считал, что раз число членов в последовательности бесконечно, то и сумма должна быть бесконечной. Он не мог себе представить, что последовательность бесконечного количества чисел может быть сходящейся и иметь конечную сумму.