Именно таким образом вирус иммунодефицита человека (ВИЧ) встраивается в ядерную ДНК и размножается вместе с клеточным геномом. Вот почему от этого вируса трудно избавиться, ведь каждая встроенная (интегрированная) ДНК-копия вируса может использоваться для образования множества копий РНК в результате нормального процесса транскрипции, а это в свою очередь приводит к появлению новых инфекционных ВИЧ-частиц. Еще один пример ретровирусов — это вирусы, вызывающие рак легких и лейкоз у человека и животных.
В конце 1997 г. в журнале «Nature» была опубликована работа группы Ролфа Цинкернагеля (Zinkemagel) из Цюриха, в которой показано, что в некоторых клетках животных, содержащих обратную транскриптазу ретровирусов, могут образовываться ДНК-копии других РНК-содержащих вирусов. Это захватывающее открытие означает, что обратная транскрипта-за, кодируемая ретровирусами, потенциально способна делать копии ДНК с других молекул РНК, присутствующих в клетке. Значит, возможно образование свободных ДНК-копий (их называют кДНК, или ретротранскрипты) собственных генов по матрице мРНК. Эта идея, допускающая теоретическую возможность передачи генетической информации от сомы к зародышевой плазме (о чем и говорил Тед Стил еще в 1979 г.), приблизила нашу теорию об эволюции иммунной системы позвоночных к реальности. В следующих главах мы детально опишем молекулярные данные, поддерживающие эту теорию.
Мир РНК — передача функции генетического чертежа от РНК к ДНК
Есть еще один вопрос, который биологи продолжают себе задавать, несмотря на то, что мы все больше и больше узнаем о молекулярно-генетических процессах. Что появилось раньше: ДНК, РНК или белок? Этому вопросу посвящено много исследований. Здесь мы остановимся на основных моментах.
В начале 1980-х годов Томас Кеч (Cech), Сидней Алтман (Altman) и их коллеги открыли ферментативные свойства молекул РНК, которые были названы «рибозимами»[6]. С этого времени появилось много концепций, касающихся «мира РНК». Предполагается, что первой живой молекулой был полимер РНК. Белков, какими мы их знаем теперь, и содержащих ДНК хромосом еще не существовало. В мире РНК микроскопические живые формы были самореплицирующимися молекулами РНК разной длины, от сотен до тысяч оснований. Репликация линейной цепочки РНК контролировалась самой молекулой (рибозимом), определенным образом сложенной. Итак, согласно этой гипотезе, первыми молекулами, способными к само-репликации и, следовательно, к дарвиновской эволюции, были не двойные спирали ДНК, как теперь, а РНК. Репликация же ДНК требует сложного набора специфических ферментов, составляющих «машину репликации ДНК».
Открытие ферментативных функций РНК и ее способности к саморепликации завершило 30—40-летний период попыток рационально объяснить первые шаги молекулярной эволюции жизни. Тот факт, что одноцепочечные молекулы РНК способны сами себя реплицировать и изменять, представлялся с функциональной точки зрения существенным. Сейчас известно, что все матричные процессы копирования, затрагивающие РНК (транскрипция, репликация и обратная транскрипция — рис. 2.4 А, В), склонны к ошибкам.
Это важно для нас, потому что все гены клеточных организмов представлены двухцепочечными молекулами ДНК, чрезвычайно точную репликацию которых осуществляет сложный аппарат (включающий от 30 до 40 разных белков). Высокая точность копирования достигается за счет того, что несколько белков, участвующих в репликации ДНК, занимаются исключительно редактированием и исправлением вновь образуемой копии ДНК. Например, если во время репликации вместо С встанет А, фермент- «редактор» заметит это, так как будет нарушен нормальный процесс спаривания оснований, и вставит на нужное место правильное основание. Если химическое повреждение основания происходит после того, как вновь синтезированная цепочка соединяется с родительской (матрицей), образуется «изгиб» двойной спирали, который запускает редакторские функции ферментного комплекса, вырезающего поврежденную последовательность и синтезирующего заново правильную копию (рис. 2.7). Это сродни процессу, который происходит при проверке полноты данных в ходе передачи электронного сообщения. Вот почему генные мутации, возникающие исключительно на уровне ДНК, — чрезвычайно редкие события. Мутации, которые мы видим, это те мутации, которым удалось пройти сквозь все нормальные редакторские и корректорские кордоны репликационной машины. Репликация ДНК — это процесс копирования очень высокой точности. В самом деле, на каждые миллиард реплицированных оснований остается нераспознанной только одна ошибка.