Таким образом, древний мир РНК представляется «эволюционирующим хаосом», в котором выживали наиболее приспособленные самореплицирующие молекулы. Манфред Эйген (Eigen) с коллегами провели поучительное исследование, которое показало, каким образом склонное к ошибкам копирование РНК и отбор могут давать квази-оптимальную популяцию молекул РНК. Эта популяция молекул РНК способна быстро эволюционировать при изменении окружающей среды.
Одноцепочечная РНК химически менее устойчива, нежели двухцепочечная ДНК. Очевидно, что в какой-то момент далекого эволюционного прошлого ранним формам жизни стало выгодно стабилизировать свой наследственный чертеж. Это послужило началом перехода от мира РНК к миру ДНК. Первый необходимый шаг на пути к миру ДНК — это передача информационной функции от РНК-последовательности к ДНК-последовательности, т. е. появление обратной транскрипции.
Рис. 2.7. Репарация ДНК. Ошибки в ДНК-последовательности оснований, которые передаются по наследству, вносят вклад в генетическую изменчивость популяций и, таким образом, в эволюцию путем естественного отбора. Ошибки, или мутации, редки, потому что аппарат репликации ДНК осуществляет несколько последовательных редакций и проверок молекулярной целостности двойной спирали. На рисунке схематично показан один из типов исправления ошибок, включающий удаление химически измененного или неправильного основания, которое не может спариваться с комплементарным основанием в другой цепи. Короткий участок вокруг неспаренного (или поврежденного) основания удаляется специальными разрезающими ферментами (эндонуклеазами). Образовавшийся пробел заполняется в результате репаративного синтеза ДНК в направлении от 5' к 3'. В качестве матрицы для этого синтеза служит другая цепь.
Наиболее вероятно, что древняя обратная транскриптаза была РНК-ферментом (рибозимом). Появление более сложных белковых обратных транскриптаз произошло позже.
Тем не менее для некоторых РНК-содержащих вирусов, таких как вирус гриппа и ретровирусы, высокий уровень ошибок, свойственный процессу образования РНК, в сочетании с некоторыми другими особенностями генома дает селективные преимущества. Высокий уровень мутирования (примерно одно ошибочное основание на каждую тысячу реплицированных оснований) делает их неуязвимыми перед иммунной системой инфицированного хозяина. Это привело к тому, что даже после появления в ходе эволюции белковых ферментов, РНК сохранилась в качестве вирусного генома. Совсем недавно, в конце 1980-х гг., Элизабет Блакберн (Blackburn) показала, что ферменты, которые строят ДНК-последовательности по РНК матрице на концах хромосом позвоночных (теломерах) путем обратной транскрипции, имеют явную эволюционную связь с вирусными ферментами, копирующими вирусные РНК. Это еще один пример эволюционной значимости РНК.
Почему мы придаем такое огромное значение этому шагу молекулярной эволюции? Потому что далее мы покажем насколько важна обратная транскрипция для всех современных ламарковских идей о существовании обратной связи генов, которая делает возможным наследование приобретенных соматических мутаций.
Глава 3
ИММУННАЯ СИСТЕМА
Организм человека постоянно подвергается нападению агрессивных патогенных вирусов и бактерий. Как иммунной системе удается отбивать эти атаки? Как она различает, где «свои» и где «чужие»? Каким образом наш организм быстро создает целые армии новых антител для борьбы с доселе неизвестными патогенами? Каковы механизмы иммунологической памяти, позволяющей клеткам иммунной системы эффективнее бороться с возбудителем при повторной встрече с ним. Если хоть на минуту задуматься над этими вопросами, можно понять, что научное и философское значение ответов на них выходит за узкие рамки иммунной системы. Именно поэтому иммунная система столь интересна для исследования, а за работы, раскрывающие механизмы иммунитета, присуждено так много Нобелевских премий.
В этой и двух следующих главах (гл. 4 и 5) мы расскажем о развитии иммунологии, об эволюции иммунной системы позвоночных и о современных молекулярно-генетических исследованиях в этой области. По мере того как мы находим ответы на поставленные вопросы, нашим глазам открываются все новые научные, практические и этические проблемы. В свете этих новых знаний, многое из того, что раньше нам казалось незыблемым, сейчас представляется спорным. В иммунологии сошлись все современные идеи генетики, теории развития и теории эволюции. Наша задача показать, что недавние научные открытия ставят под вопрос неодарвинистские концепции эволюции. В гл. 6 мы изложим свои представления о том, как сложные молекулярные процессы в иммунной системе могут приводить к переносу генетической информации из соматических клеток в половые. Эта концепция составляет главную тему нашей книги, а именно что признаки, приобретенные в течение жизни, могут передаваться потомкам.