Выбрать главу

Научные основы вакцинации были разработаны во второй половине девятнадцатого века отцом современной микробиологии и иммунологии Луи Пастером. В контролируемых испытаниях он установил эффективность использования «ослабленных», не представляющих угрозу, форм возбудителя для иммунизации против вирулентных штаммов. Ослабленные бактерии или вирусы несут те же антигены (или молекулярные признаки, распознаваемые иммунной системой), что и исходные болезнетворные штаммы, но они потеряли способность вызывать заболевание.

Рис. 3.2. Схема строения молекулы антитела. Антитела являются гетеродимерами, так как основная составляющая их единица состоит из разных белковых цепочек: тяжелой (Н) и легкой (L) цепей (см. табл. 3.1). Две Н + L-пары, образующие основную молекулу, удерживаются вместе химическими связями. Такое строение характерно для lgG-антител и связанных с клеточной поверхностью мономерных IgM (и IgD). Обратите внимание, что антигенсвязывающий центр образован взаимодействием вариабельных областей Н- и 1-цепей. Константная область Н-цепи определяет класс иммуноглобулина и защитную функцию антитела (см. табл.3.1). Внизу рисунка в рамке приведены сильно упрощенные изображения антител, которые используются в других рисунках (рис. 1.2, 3.1, 3.6, 3.7и 4.1).

И в настоящее время наиболее эффективные вакцины — ослабленные штаммы (например, против желтой лихорадки и полиомиелита). Сейчас для создания вакцин используются молекулярно-генетические методы. Этими методами в ослабленные вирусные или бактериальные штаммы вводят ДНК-последовательности, кодирующие нужные антигены, и получают чистые белковые антигены, используемые для вакцинации. Некоторые из таких вакцин нового поколения уже используются в клинике. Сейчас мы знаем, что вакцинация стимулирует образование активированных Т-лимфоцитов и защитных антител, которые помогают нашему организму ликвидировать вирусную или бактериальную инфекцию (рис. 3.1). В общих чертах структура антитела показана на рис. 3.2.

Переливание крови и начало современной иммунологии

К началу XX века стало ясно, что антитела против холеры (заболевания тонкого кишечника, сопровождающегося тяжелой диареей) высокоспецифичны, они связывают антигены холерного вибриона и неспособны связывать никакие другие антигены. За открытие специфической природы антител, роли антител и фа-гоцитирующих клеток в иммунном ответе Пауль Эрлих и Илья Мечников были удостоены Нобелевской премии. Специфичность антител всесторонне продемонстрирована в начале этого века Карлом Ландштейнером (Landsteiner). В 1930 году он был удостоен Нобелевской премии. Ему принадлежит и ряд других важных открытий. Но самые известные его работы касаются системы АВО эритроцитарных антигенов человека. Это открытие дало объяснение совместимости доноров и реципиентов при переливании крови:

Антигены эритроцитов Антитела, в плазме крови тех же людей
A анти-В
В анти-А
АВ Нет
0 (нет ни А, ни В) анти-А и анти-В

Эритроциты (красные кровяные клетки) типа А, смешанные с плазмой крови, содержащей анти-А-антитела, слипаются (агглютинируют). Эритроциты типа А, подвергшиеся действию анти-В-плазмы, не агглютинируют. Таким образом, если человеку с группой крови А нечаянно перелита В-кровь, содержащая анти-А-антитела, в кровеносных сосудах может происходить агглютинация. Лучше всего человеку с группой крови А переливать кровь А, а человеку с группой крови В переливать кровь В. При отсутствии нужной донорской крови в случае острой необходимости людям с группами крови А или В можно переливать 0-эритроциты, отмытые от плазмы крови (в которой содержатся анти-А- и анти-В-антитела). У людей с группой крови 0 эритроциты не имеют на поверхности ни антигенов А, ни антигенов В, но в плазме таких людей присутствуют антитела двух типов (анти-А и анти-В). Вот почему переливать им кровь, несущую антигены А или В, нельзя. Это может вызвать гемолиз. Таким образом, 0 — универсальный донорский тип эритроцитов, а АВ, наоборот, — универсальный реципиент.