Такое распределение иллюстрирует две ключевые черты соматического гипермутирования. Разделение ДНК-последовательностей, кодирующих вариабельные (V) и константные (С) области, дает то эволюционное преимущество, что разрешаются мутации в V-генах, но сохраняются неизменными С-гены. То, что механизм соматического мутирования ограничен только перестроенным V(D)J-геном и не затрагивает гена С-области, особенно важно для тяжелых цепей. Они образуют ту часть молекулы антитела, которая определяет ее функциональные свойства, такие как лизис бактериальных клеток, поглощение и разрушение инфекционных агентов фагоцитами, сигналы В-клеткам к делению и продукции антител, процессы, приводящие к стимуляции Т-клеточной помощи В-клеткам. Для легких цепей этого не требуется, потому что константная область легкой цепи не выполняет этих функций.
Второй принцип, показанный на рис. 5.5, — мутации не распространяются вверх от гена. 5'-граница находится вблизи сайта начала транскрипции или лидерного интрона (некодирующая последовательность между L- и V-кодирующими участками, рис. 4.5). Тому есть очень важная причина, так как в этом участке находятся регуляторные последовательности (промоторный, или Р-район), которые определяют связывание РНК-полимеразного комплекса, инициацию транскрипции и образование мРНК.
Важно отметить, что мутации сосредоточены только там, где они не изменяют ни С-областей, ни Р-районов, которые контролируют экспрессию гена. Как достигается такое точное прицеливание?
Механизм соматического гипермутирования V(D)J-генов
Распределение мутаций, показанное на рис. 5.5, и известные уровни ошибок копирования молекул РНК (см. рис. 5.2) были двумя основными фактами, которые привели в 1987 г. Теда Стила и Джеффа Полларда (Pollard) к созданию «модели обратной транскриптазы» для объяснения механизма соматического гипермутирования (для краткости — КТ-модель). Эта идея родилась на год раньше в феврале в Волонгонге и была сформулирована летом 1986 г., когда Тед и Джефф встретились в Нью-Йорк Сити. (К этому моменту оба считали, что поняли почти все, и решили опубликовать свою идею.) Тед считал, что RT-модель следует из теории соматического отбора. Однако аргументы Боба Бландэна убедили Теда, что RT-модель соматического гипермутирования по смыслу должна предшествовать теории соматического отбора. (Также она должна предшествовать и в эволюционном смысле — соматические мутации небольшого начального набора V-генов зародышевой линии должны происходить до передачи информации V-генов от сомы к зародышевой линии. Этот гносеологический поворот на самом деле упрощает интерпретацию данных о ДНК-последовательностях, особенно касающихся генетической рекомбинации V-генов зародышевой линии (см. обсуждение следов интеграции сомы в зародышевую линию и рис. 6.3)
С 1986 г. работа над гипотезой обратной транскрипции продолжалась в нашей лаборатории с участием Джерри Бота (Both) и Гарри Ротенфлу (Rothenfluh). Сейчас мы можем привести детальную теоретическую молекулярную модель соматического гипермутирования в В-клетках: она включает неточную, склонную к ошибкам обратную транскрипцию и возврат генов в ДНК зародышевой линии (рис. 5.6). Эта модель согласуется с подавляющим большинством экспериментальных результатов, касающихся соматического гипермутирования. Ее можно распространить на молекулярные механизмы, которые приводят к соматическому разнообразию перестроенных V(D)J-генов вариабельных областей у кур, до сих пор называемые генной конверсией. Однако мы должны подчеркнуть, что до тех пор, пока все молекулярные детали не будут экспериментально обоснованы, наша модель останется гипотезой, хотя и совместимой со всеми доступными данными.
Мы предположили, что молекулярной машиной, которая с высокой частотой вызывает мутации перестроенной ДНК V(D)J-гена, должна быть «RT-мутаторсома» (RT — обратная транскриптаза). Существует много молекулярных органелл с суффиксом «сома», например «рибосома» (комплекс белков и РНК, необходимый для трансляции информационной РНК в последовательность аминокислот, см. приложение) и «сплай-сосома» (также РНК-белковый комплекс, который вырезает интроны из про-мРНК). Итак, гипотетическая RT-мутатор-сома использует несплайсированную про-мРНК как матрицу для синтеза кДНК. Термин кДНК, где «к» обозначает комплементарная — общий термин для всех ДНК-копий РНК-матрицы, созданных обратной транскриптазой (кДНК также называют «обратными транскриптами» или «ретротранскриптами».