Выбрать главу

Генетический код, используемый рибосомой, можно посмотреть здесь (Рис. 14):

Рисунок 14. Наиболее распространенный вариант генетического кода живых организмов. Таблица соответствия кодонов (последовательностей из трёх конкретных нуклеотидов) конкретным аминокислотам. Английские буквы A, G, C, U соответствуют аденину, гуанину, цитозину и урацилу.

Здесь определенная последовательность из трёх нуклеотидов (так называемый кодон) соответствует одной определенной аминокислоте. Например, в нашем случае (расшифровываем нашу иРНК) последовательность из первых трех аденинов (ААА) соответствует аминокислоте лизину. Следующий кодон САС – соответствует аминокислоте гистидину. Следующий кодон СUG – это аминокислота лейцин. Далее CUU – это тоже аминокислота лейцин (такие взаимозаменяемые кодоны можно назвать синонимичными). Далее кодон GUA – обозначает аминокислоту валин. И наконец, кодон GAC обозначает аспарагиновую кислоту.

В результате, если в рибосоме окажется иРНК с последовательностью нуклеотидов:

А-А-А-Ц-А-Ц-Ц-У-Г-Ц-У-У-Г-У-А-Г-А-Ц

то на выходе рибосома выдаст следующую белковую цепочку (названия аминокислот сокращены):

Лиз-Гис-Лей-Лей-Вал-Асп

Таким образом, рибосома создаёт нужные организму белки строго по рецепту, записанному в ДНК в виде последовательности нуклеотидов. А сами белки, в свою очередь, отвечают за разные признаки и свойства конкретного живого организма.

Получается серьезная аналогия с компьютерной программой.[25] Допустим, целью и результатом работы какой-нибудь компьютерной программы является построение определенного изображения на компьютерном мониторе. Пусть это будет «прорисовка» какого-нибудь виртуального игрового персонажа. Например, какой-нибудь виртуальной девушки. Помимо прорисовки соответствующего виртуального объекта, будет неплохо, если компьютерная программа обеспечит еще и правильное «функционирование» этого изображения на компьютерном мониторе – запрограммирует соответствующие движения игрового персонажа, обеспечит целесообразное взаимодействие этой виртуальной девушки с окружающим её игровым миром. И тому подобное.

Точно так же, целью и результатом работы генетической программы, записанной в ДНК, является построение конкретного живого существа. И поддержание его существования. То есть, результатом работы генетической программы является не только построение тела живого существа (инфузории, дождевого червя или колибри), но еще и то, как это тело будет взаимодействовать с миром: избегать опасностей, искать источники пищи и т. п.

Таким образом, определенные аналогии между компьютерной и генетической программой очевидны.[26]

Ну а отличием между этими программами (генетической и компьютерной), является, во-первых, природа носителей информации (там намагниченные жесткие диски, а здесь длинные органические молекулы). Во-вторых, генетическая программа отличается от нашей (даже самой современной) компьютерной программы – запредельной сложностью. Наши компьютерные программы пока еще примитивны в сравнении с генетическими программами, по которым строятся живые организмы. Генетические программы живых существ (отдельные их части нередко называют генными сетями) насыщены генами-«включателями», «выключателями» и «переключателями», которые контролируют подотчетные им отдельные гены или целые генные каскады, а так же друг друга.[27] В результате получается примерно вот что (Рис. 15):

Рисунок 15. Генная сеть, то есть комплекс генов, так или иначе взаимодействующих с геном FOXP2, одним из ключевых генов, ответственных за формирование речи (Konopka et al., 2009). Здесь показаны только те гены, которые активно реагируют на разные модификации гена FOXP2 (человеческий или шимпанзиный). Есть еще и другие гены, тоже связанные с геном FOXP2, но работающие с ним независимо от того, какой конкретный вариант гена FOXP2 перед ними.[28]

Понятно, что разобраться в таких генетических программах очень непросто. Легче всего установить, что с чем взаимодействует. А вот для чего взаимодействует – здесь еще пока, как говорится, «черт ногу сломит» (С).

Так же запредельно сложны и сами живые существа (на организменном, тканевом, клеточном и молекулярном уровнях организации). Организация жизни на молекулярном уровне вообще представляет собой, по сути, чрезвычайно продвинутые нано-технологии. Даже в простейшей живой клетке успешно работают конвейерные линии из нано-машин и нано-механизмов, о которых мы пока можем лишь мечтать в смелых проектах. Например, знаменитый фермент АТФ-синтаза является самым маленьким роторным мотором в природе. Понятно, что сделаны все эти нано-машины из органики.

вернуться

25

Еще более точно – с интерактивной компьютерной программой.

вернуться

26

Причем характернейшей чертой генетических программ является то, что генетические программы исключительно интерактивны. Подобно тому, как в компьютере (например, в какой-нибудь компьютерной игре) – программа (точнее, программно-аппаратный комплекс) постоянно ожидает от своего пользователя определенных внешних сигналов (нажатий на мышку, клавиатуру или прикосновений пальцев к сенсорному экрану) – чтобы определиться в каждый новый момент времени, какие программные действия далее исполнять. Так же и в геноме – каждую секунду сотни разных генных комплексов (аналоги отдельных программных функций, процедур или подпрограмм) – ожидают внешних сигналов (в виде специфических сигнальных веществ), чтобы определить, начинать ли исполнение данной «генетической процедуры», или не начинать (или же исполнять процедуру только строго определенным способом).

вернуться

27

В отличие от компьютерной программы (где работают электронные сигналы), в генетической программе разные включения и переключения генов и генных каскадов производятся химическим способом, с помощью различных сигнальных веществ и химических меток, «мишеней» (на генах), предназначенных для этих сигнальных веществ.

вернуться

28

Можно посмотреть и на другие генные сети, например, на комплекс взаимодействующих генов, контролирующих апоптоз – запрограммированную клеточную смерть (Колчанов Н.А. «Ловчие сети эволюции»: http://wsyachina.narod.ru/biology/life_evolution_3/gene_network.html). Или еще: http://www.john.ranola.org/wp-content/uploads/2012/01/RadNet.jpg и т. п.