Как же она объясняет теперь происхождение биотоков? В процессе обмена веществ между организмом и окружающей средой, между тканями и органами происходят сотни биохимических реакций, образуются электрически заряженные молекулы и атомы, называемые ионами. Положительные ионы (катионы) меньше по размерам, более подвижны, чем отрицательные ионы (анионы). В результате катионы легче проходят через клеточные перегородки, чем анионы, создаются условия для их разделения, то есть образования между отдельными участками мышечной, железистой или нервной ткани разности потенциалов. В теле неработающего человека она достигает 0,01 в, в теле работающего — доходит до 0,03 в. При повреждении тканей разность потенциалов может достигать 0,06—0,07 в. Роль проводника для токов, образующихся в результате наличия разности потенциалов, играют ткани, обладающие более высокой проводимостью, чем соседние.
Во всех органах и тканях образуются биотоки. Возникают они и при работе сердца, расходясь затем по всему организму. Расслабленное сердце имеет положительный потенциал, сокращенное — отрицательный.
Особенно важное значение придается изучению токов, образующихся при работе мозга. Разность их потенциалов измеряется миллионными долями вольта. Токи мозга можно обнаружить, наложив на голову специальные электроды и соединив их с электронным усилителем (с коэффициентом усиления в десятки тысяч). В результате на экране осциллографа можно видеть характер токов и их изменения. Учеными установлено, что токи мозга обладают определенной ритмичностью. Уже известно несколько таких ритмов — альфа, бета, гамма и другие. Частота изменений у альфа-ритма (8—12 колебаний в секунду), она выше у бета-ритма (20–30 колебаний в секунду) и еще выше у гамма-ритма. Частоты, а значит и ритмы, зависят от состояния, в котором находится человек. Определенное нарушение работы мозга вызывает определенные же изменения биотоков. Такая зависимость характера токов от состояния организма позволяет ученым изучать процессы, происходящие в мозгу человека. И не только изучать, но иногда и судить о том, здоров ли человек, если болен, то чем, и т. д.
А в 1962 г. биотоки мозга были использованы для наблюдения с Земли за состоянием организма космонавтов Андрияна Николаева и Павла Поповича. Для этого ученым пришлось использовать систему биотелеметрии, то есть передачи по радио данных о биотоках. Была создана специальная аппаратура, разработан наиболее эффективный способ отведения биотоков, система наложения электродов.
И вот 11 августа 1962 г. при подготовке А. Николаева к полету ему надели шлемофон с маленькими серебряными электродами в области лба и затылка. На поверхности электродов — тонкий слой специальной пасты. Она уплотняет контакт электродов с кожей.
Провода от электродов подводятся к миниатюрному усилителю, размещенному вместе с источниками питания в маленькой коробочке, а она — в кармане скафандра.
Только начался исторический полет, а на Земле у специалистов космической медицины уже была под руками запись биотоков человека, находящегося в межпланетном пространстве. Такие же записи велись и с борта космического корабля «Восток-4», пилотируемого П. Поповичем. Расшифровка этих записей дала богатый научный материал. Получение первых в истории науки записей биотоков из космоса — выдающееся достижение советской космической медицины и нашей радиоэлектроники.
Исследование биотоков головного мозга космонавтов позволяет получить представление о физиологическом состоянии центральной нервной системы в целом и дает возможность судить о ее реакциях на различные воздействия, связанные с многодневными космическими полетами. Введение в программу наблюдений за космонавтами записи биотоков их мозга преследовало цель исследовать нервнопсихическое состояние организма человека при длительном пребывании в состоянии невесомости. Метод исследования биотоков головного мозга в определенной степени позволяет также контролировать состояние сна и бодрствования, утомления и возбуждения.
У космонавтов исследовались на расстоянии не только биотоки мозга, но и электрическая активность сердечной мышцы, кожно-гальванические реакции. Контроль за электрической активностью сердечной мышцы дает представление о состоянии сердечно-сосудистой системы. Он использовался и в предыдущих полетах, что позволило проводить сравнение полученных данных.