Выбрать главу

1.2. Комплексные числа

Кратко напомним историю возникновения комплексных чисел. Хорошо известно, что корни математики уходят в глубокую древность и уже тогда ученые столкнулись с необычными числами. Пифагор придавал числам мистический смысл. Документальные сведения о необычных числах датируются 1545 годом, когда Джиронимо Кордано предложил создать новый вид чисел для решения некоторых уравнений. В 1552 году Рафаэль Бомбелли установил первые правила арифметических операций над такими числами. Название «мнимые числа» ввел в 1637 году Рене Декарт. В 1707 году Абрахам де Муавр построил общую теорию корней уравнений любой степени. В 1777 году Леонард Эйлер предложил использовать первую букву французского слова imaginare (мнимые) для обозначения мнимой единицы. Этот символ вошел во всеобщее употребление благодаря Карлу Гауссу (1831 г.), который ввел термин «комплексные числа» (z = x ± iy).

1.2.1. Классическая физика

С конца XIX века комплексные числа прочно вошли в арсенал физики и стали неотъемлемой частью практически всех ее разделов. Главная особенность использования комплексных чисел заключается в том, что с их помощью удивительно легко и просто решаются задачи, принципиально нерешаемые в рамках математики вещественных чисел. С самых ранних этапов использования комплексных чисел, велись дискуссии о реальности результатов вычислений, содержащих не только вещественную часть, но и часть с мнимой единицей. Особенно актуальным этот вопрос был в тех разделах классической физики (электрические цепи, передача информационных сигналов, гидродинамика, аэродинамика и др.), где результаты расчета непосредственно проверялись экспериментом. Здесь существуют многочисленные примеры реального наблюдения некоторых явлений, описываемых мнимой частью комплексного числа [13].

Наиболее четко это можно проследить на примере, так называемого, импеданса (Z) — комплексного полного сопротивления электрической цепи. Если придать току и напряжению комплексную форму, то закон Ома для сложной цепи, содержащей кроме омического сопротивления еще конденсатор и катушку индуктивности, сохраняет свой традиционный вид. Но теперь формула закона Ома будет содержать новое сопротивление в виде комплексного числа Z: U = ZI =(iLω + R)I (i — мнимая единица, U — напряженность, L — индуктивность, ω — частота, R — омическое сопротивление, I — электрический ток). В самом общем случае, для любых сложных электрических цепей, сопротивление представляется в виде суммы активного (вещественного) и реактивного (мнимого). Физическое измерение (с помощью физических приборов) дает суммарное сопротивление. Теоретически можно выделить вещественную и мнимую части, но зафиксировать их по отдельности, видимо невозможно. А. Анго [13] приводит множество примеров из практики электрических цепей, подтверждающих реальность мнимого составляющего импеданса, как полного комплексного сопротивления цепи.

Интересно, что правила преобразований комплексных чисел применимы только в случае линейных операций. Для нелинейных операций эти правила неприменимы. Основные свойства комплексных чисел легко обобщаются на случаи комплексных векторов и комплексных функций. Кроме того, комплексная плоскость позволяет применять, так называемые, конформные (подобные) отображения, упрощающие расчеты не только в электрических цепях, но и в задачах теплопроводности, гидродинамики и, даже, магнитных полях. Та же проблема реальности мнимых форм возникает при использовании, так называемого, интеграла Фурье в комплексной виде. В электрической цепи электродвижующую силу (эдс) можно с помощью интеграла Фурье рассматривать как сумму бесконечного числа синусоидальных колебаний. А. Анго приводит ряд примеров, когда комплексный интеграл Фурье следует рассматривать как физическую реальность. Его соображения применимы и к оптическим задачам, где имеется тесная связь между коэффициентом преломления и коэффициентом поглощения в виде соотношений, связывающих вещественную и мнимую части диэлектрической постоянной (дисперсионные соотношения). В последние годы дисперсионные соотношения стали широко использоваться при изучении взаимодействия элементарных частиц.

Следует отметить еще одну особенность интеграла Фурье: в комплексной форме ему можно придать вид, когда между самим интегралом Фурье (зависящим от времени) и его коэффициентом Фурье (зависящим от частоты) устанавливается полная симметрия. Это означает, что существует симметрия между временем и частотой. Данный факт играет большую роль в современной теории информации.