Глава 2. Информация в математике
Ученые-философы Древней Греции (Пифагор, Платон, Аристотель и др.) считали, что настоящая наука невозможна без математики. Поэтому следует дать небольшой обзор достижений современной математики.
2.1. Структура математики
2.1.1. Становление современной математики
Математика (по-гречески буквально — «знание») — это наука о количественных отношениях и пространственных формах нашего мира. Но чтобы исследовать эти формы и отношения в чистом виде, необходимо отделить их от содержания. В результате мы приходим к, так называемой, абстрактной математике. И чем больше развивается абстрактная математика, тем больше ее приложений мы используем в рамках, так называемой прикладной математики. Существует и обратный процесс: потребности практики или других наук приводят к появлению новых математических методов. Однако это всегда мешало формированию математики как независимой, самостоятельной абстрактной науки, о чем мечтает любой профессиональный математик. Хотя большая часть математики была создана благодаря потребностям практики, в первую очередь — физики, название «прикладная математика» во многом условно, так как математики постоянно стремятся создать свою науку, такую же фундаментальную, как физика. У физики есть объективные правила игры — законы природы; есть объективный критерий правильности теории — опыт; есть четко сформулированная цель — Единая теория всех частиц и полей. Однако, обусловленный успехами физики технический прогресс опережает биологические возможности человека в осмыслении его негативных последствий.
Физику можно достаточно строго разделить на теоретическую (дающую предсказания) и экспериментальную (проверяющую эти предсказания). Долгое время физический эксперимент был единственным критерием правильности физической теории. Но для многих современных физических теорий постановка эксперимента стала невозможной (например, в теории Вселенной), поэтому правильность таких теорий может быть подтверждена только непротиворечивостью используемой математики. Таким образом, у прикладной математики (долгое время «обслуживающей» теоретическую физику) появился свой собственный критерий правильности — абстрактная («чистая») математика. В этой связи, позиции теоретической физики и прикладной математики (которую иногда называют теоретической математикой) чрезвычайно сблизились и даже часто эти названия воспринимаются как синонимы. В настоящее время прикладная математика стремится придать физическим теориям, страдающим недостатком математической строгости, необходимую им непротиворечивость, восполняя, таким образом, отсутствующий экспериментальный критерий правильности.
К сожалению, глобальная цель, которую физика для себя сформулировала достаточно четко, в математике еще не созрела.
Современная математика растет стремительно и непрерывно, не зная, типичных для физики, кризисов и перестроек, обогащая нас все новыми идеями и фактами. Но любая деятельность, лишенная цели, тем самым теряет и смысл. Не имея цели, математика не может выработать и представление о своей форме, ей остается в качестве идеала — ничем не регулируемый рост, а вернее, расширение по всем направлениям. Справедливости ради следует заметить, что отсутствие цели и смысла относится почти ко всей деятельности современного человечества.
Более чем двухтысячелетняя история убеждает нас в том, что математика, по-видимому, не способна сама сформулировать ту конечную цель, благодаря которой может направлять свое развитие. Она должна, следовательно, заимствовать цель извне и вероятней всего это должно произойти на основе все большего сближения теоретической физики и теоретической математики.
Исторически первыми зачатками математики были арифметика, геометрия, алгебра и тригонометрия, развитие которых полностью определялось практическими потребностями человека (VI в. до н. э. — XVI в. н. э.). Этот период можно назвать периодом статической математики (числа, величины, фигуры и т. д.).