Выбрать главу

В XVII веке появились первые идеи описать математическим языком явления движения или изменения. Самостоятельным предметом изучения математики становится сама зависимость между величинами. На первый план выдвигается понятие функции. Появилась возможность ввести в явном виде идею бесконечности, с парадоксами которой столкнулись еще философы древних веков (например, парадокс черепахи и Ахиллеса). Строго говоря, идея бесконечности привела к введению понятия непрерывной функции, которое позволило построить дифференциальное исчисление, получившего название математического анализа, хотя точнее надо было бы все это назвать непрерывной математикой. Причем новые понятия в математическом анализе получали свое оправдание будто бы в соответствии с реальными соотношениями вещественного мира. Так, например, реальность понятия производной вытекала из реальности понятия скорости в механике, хотя это далеко не очевидно.

2.1.2. Дискретная математика

Парадоксально, но до XIX века никто не обратил внимания на тот факт, что реальный мир состоит из дискретных объектов и понятие непрерывной функции не имеет никаких аналогов в реальном мире.

Бурное развитие математики в XIX веке заставило обратить внимание на необходимость логического обоснования математики, то есть необходимо было критически пересмотреть ее исходные положения (аксиомы). Как мы уже отмечали, критерием правильности математики может быть только ее непротиворечивость. Однако до сих пор идет сильное отставание математики в строгом логическом обосновании многих математических методов, широко применяемых в современной теоретической физике, где много ценных результатов получается при помощи незаконных математических приемов.

Только в конце XIX века сложился стандарт требований к логической строгости развития математических теорий. Этот стандарт основан на теоретико-множественной концепции строения любой математической теории. С этой точки зрения любая математическая теория имеет дело с дискретным множеством объектов, связанных между собой некоторыми логическими отношениями. Новый стандарт позволил не только обосновать многие математические теории, но и систематизировать их. Однако вопрос цели в математике по-прежнему оставался открытым, вызывая головную боль у философски думающих математиков.

Тем не менее, в конце XIX века определился круг интересов так называемой дискретной (конечной) математики, основные разделы которой (теория матриц, теория групп, теория множеств, математическая логика, теория вероятностей, теория алгоритмов и т. д.) разрабатывались еще в XVII–XVIII веках одновременно с элементами непрерывной математики.

Более того, элементы дискретной математики возникли в глубокой древности. Типичными для того периода были задачи, связанные со свойствами целых чисел — Диофант (3 век), и приведшие затем к созданию теории чисел — Л. Эйлер (1707–1783), К. Гаусс (1777–1855).

Позже, в основном в связи с игровыми задачами, появились элементы комбинаторного анализа и дискретной теории вероятностей — Б. Паскаль (1623–1662), П. Ферма (1601–1665). Затем возникли важнейшие понятия алгебры, такие как группа, поле, кольцо и др. — Ж. Лагранж (1763–1813), Э. Галуа (1811–1832), имевшие, по существу, дискретную природу.

В середине 19 века Л. Эйлер заложил основы теории графов, которая в дальнейшем привела к созданию эффективных методов решения транспортных задач. Тогда же появилась теория матриц — У. Гамильтон (1805–1865), А. Кэлли (1821–1895), К. Вейерштрасс (1815–1897).

Теорию множеств разработал Г. Кантор (1845–1918), которая встретила со стороны его современников резкое сопротивление, но впоследствии оказала большое влияние на развитие математики. Теория множеств является фундаментом ряда новых математических дисциплин. Постепенно теоретико-множественные методы находят все большее применение и в классических частях математики: дифференциальные уравнения, вариационное исчисление, теория вероятностей и др. Однако в вопросах обоснования математики, теория множеств сама нуждается в обосновании применяемых в ней методов рассуждения. Более того, все логические трудности, связанные с обоснованием математического учения о бесконечности, при переходе на точку зрения общей теории множеств, приобретают лишь большую остроту.

Стремление к строгости математических рассуждений привело к появлению математической логики — Дж. Буль (1815–1864), О. Морган (1806–1871), Э. Пост (1897–1954), И.И. Жегалкин (1869–1947), К. Гедель (1906–1978).