Эта тенденция извлекать обобщенные знания из скудных данных — лучшее, что мы можем сделать как индивидуумы, поскольку проведение популяционных исследований не является типичной деятельностью людей; и даже если бы мы были склонны к систематическим исследованиям, у большинства из нас нет ни ресурсов, ни возможностей для этого. Однако тот факт, что люди делают все, что в их силах, не означает, что они всегда делают это хорошо. Более того, даже когда у нас есть доступ к данным о населении (например, о мусульманах и терроризме), мы склонны игнорировать их. Как я расскажу далее в книге, можно утверждать, что науковедение фокусировало внимание лишь на очень небольшом числе ученых и на их основе делало общие выводы. Более того, сосредоточиваясь на ученых, которые добились наибольшего успеха (или, по крайней мере, являются наиболее известными), те, кто изучает науку, загоняют себя в крайние предубеждения, потенциально ограничивая любую возможность объективно фиксировать то, что делают ученые в целом (или как группа общества).
Почему вероятностное мышление не помогает индукции
Общий подход к проблеме индукции, который часто используется в ответ на ранее высказанные опасения, состоит в том, чтобы сформулировать индуцированные утверждения о знаниях в вероятностных терминах. Это относится к заявлениям о ненаблюдаемых сущностях как в настоящем, так и на протяжении времени. Например, если мы наблюдали 99 воронов и все они были черными, можно предположить, что «все вороны черные». Однако если 100-й наблюдаемый ворон окажется белым, мы не станем разводить руками в разочаровании из-за незнания воронов. Скорее, мы просто изменим утверждение о знании, сказав, что «99 % наблюдаемых воронов черные». Этот трюк просто использует новые данные, чтобы откорректировать принцип, определяющий всех воронов. Затем новое определение можно использовать для прогнозирования ненаблюдаемых событий с вероятностной точки зрения; вы не можете утверждать, какого цвета будет следующий ворон, но вы можете сказать, что в 99 % случаев он будет черным, а в 1 % — нечерным, то есть не с абсолютной уверенностью в отношении следующего ворона, но с предсказательной силой в отношении всей популяции и относительной вероятностью того, какого цвета будет следующий ворон.
Да, вероятностный подход не позволяет предсказать отдельное событие, но нет причин, по которым он не может делать точные прогнозы относительно популяций.
Хотя рассуждения о пользе вероятности звучат утешительно, они почти не помогают решить проблему индукции и самого знания. Причина, по которой вероятностный подход не решает проблему знания, заключается в том, что даже если утверждение о вероятности истинно до последней буквы, оно никак не помогает достоверно предсказывать будущие события. В то время как утверждение сообщает вам о вероятности, что следующий ворон будет черным, следующий ворон может быть только черным или нечерным[25]. Способность определить вероятность того, что следующий ворон будет черным, — это своего рода предсказание. Тем не менее даже если человек обладает абсолютным знанием о популяции, оно не относится к конкретным случаям и, таким образом, все равно не помогает предсказать конкретные события. Когда большинство людей разговаривают со своим врачом, они не хотят знать, какова их вероятность заболеть раком; они ждут предсказание, заболеют ли раком именно они, — да или нет.
25
В этом примере используются категориальные классификации и предполагается, что существуют дискретные цвета, а не просто континуум цветов. Хотя можно спорить о том, действительно ли в природе существуют чистые и обособленные категории, люди тем не менее склонны мыслить категориями, и определенно кажется, что для использования категорий существует некоторое (если не полное) обоснование.