Если я постулирую новую сущность во Вселенной, называемую AZ-волнами, но заявлю, что природа AZ-волн такова, что их невозможно измерить, а также невозможно наблюдать эффекты их существования, то к этой сущности не будут применимы никакие научные методы. Хотя Эйнштейн предложил специальную теорию относительности в 1905 году, многие из его предсказаний можно было проверить только спустя годы[295], поскольку не существовало подходящей технологии или приходилось ждать особых обстоятельств (например, экспедиция сэра Артура Эддингтона на западное побережье Африки для наблюдения солнечного затмения 29 мая 1919 г.), чтобы проверить, искривляется ли свет от далеких звезд под влиянием гравитации Солнца. Можем ли мы в таком случае утверждать, что Эйнштейн был замечательным абстрактным математиком и мыслителем (можно даже назвать его философом), когда сформулировал теорию относительности, но не ученым? Готовы ли мы заявить, что когда впервые возникла теория относительности, она не была научной теорией, а получила статус научности только тогда, когда была изобретена технология для проверки ее предсказаний?
А как насчет передовых теорий физики сегодня? Захватывающей и новаторской теорией на пересечении квантовой физики и теории гравитации является теория струн. Как очень точно сказал Массимо Пильуччи: «Это настолько элегантная идея, что она заслуживает того, чтобы быть правдой»[296]. Но так ли это? В этом и заключается проблема: по крайней мере, на данный момент теория струн, похоже, не дает никаких эмпирически проверяемых предсказаний, которые отличались бы от предсказаний других конкурирующих теорий и которые можно было бы оценить в реальных экспериментах на современном этапе развития технологий[297]. Если научный подход требует, чтобы гипотеза давала эмпирически проверяемые предсказания (помимо того, что мы уже наблюдали и на основании чего она была получена), то теория струн, строго говоря, в настоящее время не подлежит научной проверке. Готовы ли мы заявить о том, что целое сообщество физиков, работающих в крупнейших академических институтах, финансируемых ведущими научными агентствами мира, располагающих надежной математической базой и выдвигающих инновационные идеи, не занимается настоящей наукой?
На самом деле это очень сложный вопрос, и ответ может показаться вам странным; однако стоит отметить, что в таких сложных областях имеет значение, кто разработал теорию (и кто впоследствии будет ее проверять). Тот факт, что теория, выдвинутая Эйнштейном, в то время не могла быть проверена, с самого начала был очевиден для физиков, которым он ее представил. Действительно, именно они впоследствии разработали очень хитрые способы проверки различных предсказаний теории относительности. Научное общество приняло теорию относительности именно с намерением найти способы проверки, и благодаря этому наука совершила грандиозный прорыв. Не важно, как разработчики способов проверки относились к этой теории — поддерживали и искали подтверждение или ненавидели и хотели опровергнуть. В любом случае это был глубоко научный акт поиска новых путей проверки теории, проведения экспериментов и получения результатов, имеющих доказательное значение.
Измеримые последствия существования предполагаемого бозона Хиггса были предсказаны математически за десятилетия до того, как мы построили коллайдер частиц, достаточно большой, чтобы проверить предсказание, которое сбылось[298]. Поскольку ньютоновская физика не предсказывает движение небесных тел во Вселенной в том виде, как мы его наблюдаем, физики постулировали существование темной материи, сущности, которую по своим свойствам невозможно наблюдать с помощью наших современных технологий. Я не сомневаюсь, что ученые, которые занимаются теорией струн и темной материей, очень стараются добиться прогресса либо в теории (чтобы дать проверяемые предсказания), либо в разработке инструментов для проверки предсказаний, которые мы в настоящее время не можем проверить. Опять же, хотя это может показаться странным, это веский аргумент в пользу того, что нужно учитывать контекст, в котором выдвинута непроверяемая (пока) теория, независимо от того, какие успехи в проверке теории достигнуты на сегодняшний день. Если теория выдвинута именно для критического рассмотрения и прилагаются систематические усилия, чтобы найти новые способы проверки, либо путем разработки теории, позволяющей делать больше прогнозов, либо путем развития технологий, позволяющих проверять текущие прогнозы, — тогда теория рассматривается с научной точки зрения. Следовательно, чисто умозрительные исследования имеют право называться наукой до тех пор, пока они развивают теорию таким образом, который может привести к проверке ее предсказаний, и сами к этому стремятся. Напротив, если таких усилий (теоретических или технологических) не предпринимается, можно усомниться, что это действительно наука. Из-за целостных свойств природного мира технический прогресс в несвязанной области может непреднамеренно найти технологию, способную оценивать ранее не поддающиеся проверке предсказания, или другая, казалось бы, несвязанная теория может неожиданно войти в систему знаний и подсказать новые прогнозы либо способы проверки базовой теории. Таким образом, ранее непроверяемая теория, внешне мало похожая на настоящую науку, внезапно может оказаться на острие научного прогресса.
295
Лишь совсем недавно, в 2010 году, новые технологии позволили проверить предсказания, вытекающие из теории относительности Эйнштейна, опубликованной почти веком ранее.
298
Как я говорил в предыдущих главах, из-за проблемы недоопределенности это не «доказательство» существования бозона Хиггса.