В этой главе я акцентирую ваше внимание на неприкосновенности данных и гибкости других частей научного подхода, в отличие от гибкости данных и неприкосновенности иных частей убеждений во многих ненаучных системах. В самом деле, способность системы мышления изменить свои взгляды на основе данных чрезвычайно важна для понимания природы науки. Как сказал известный физик Карл Саган, «...в науке нередки случаи, когда ученые говорят: “Вы знаете, это действительно хороший аргумент; я был неправ”, и они действительно меняют свои убеждения, и вы больше никогда не услышите от них старые аргументы. Это происходит не так часто, как следовало бы, потому что ученые — тоже люди, им трудно расставаться с заблуждениями. Но это происходит каждый день. Я не припомню, когда в последний раз подобное случалось в политике или религии».
Воспроизводимость и повторяемость как обязательное условие наблюдений
Одна из вещей, о которой постоянно говорят ученые, — это воспроизводимость наблюдений. Другими словами, если один исследователь проводит эксперимент и наблюдает результат, может ли подобный результат наблюдаться, когда эксперимент повторяется снова и снова? Более того, может ли ученый в лаборатории на другом конце света наблюдать то же самое? Обеспокоенность по поводу недостаточной воспроизводимости данных оказалась в последние годы в центре внимания, поскольку стало ясно, что многие эксперименты (как правило, чрезвычайно сложные и дорогостоящие) не могут быть воспроизведены другими учеными[107]. Это вызвало изрядную растерянность ученых. Почему вопрос воспроизводимости вызвал такой шум? Если поклонник спиритизма идет по лесной тропе, чувствует присутствие энергии внутри себя и рассказывает об этом другим спиритуалистам, никто не скажет ему, что это было нереально, потому что у других людей не было таких ощущений, когда они шли по той же тропинке. Более того, отсутствие опыта других людей может сделать этот опыт еще более глубоким, поскольку он отражает уникальную личную связь между духом и человеком. И наоборот, существует несколько причин, объясняющих, почему ученые уделяют такое пристальное внимание воспроизводимости и почему она входит в определение науки.
Во-первых, проблема воспроизводимости связана со случайными ошибками в результатах наблюдений, которые не отражают действительные явления природы. Ученые стремятся сделать общие выводы из конкретных наблюдений за природой (т. е. провести индукцию, как объяснено в главе 1), но всегда есть опасения, что ученые не наблюдали истинную картину природы, а были обмануты случайным шумом (более подробно этот вопрос рассмотрен в главах 7 и 9). Однако если явление наблюдается снова и снова, то гораздо менее вероятно, что оно произошло случайно. Следовательно, воспроизводимость защищает от так называемых «ошибок первого рода», которые возникают в результате вывода о существовании некоторого природного явления, хотя на самом деле его нет.
Второй важный компонент воспроизводимости, особенно когда речь идет о разных ученых и лабораториях, — это проблема обобщаемости. Что-то может происходить снова и снова в лаборатории одного ученого, но не происходить ни в одной другой лаборатории в мире. Если это так, то ученые со всего мира могут посетить лабораторию первооткрывателей и самостоятельно наблюдать это уникальное явление. Во многих широко известных случаях сотрудники такой лаборатории допускали ошибку, были небрежными или неверно истолковывали полученные результаты. Однако в некоторых случаях в лабораторной методике скрывалось что-то особенное, что не было должным образом внесено в отчеты и передано другим лабораториям. В качестве альтернативы в самой лаборатории могло быть что-то особенное, чего не было в других лабораториях. Выявление подобных нюансов не только позволяет лабораториям по всему миру наблюдать и изучать одно и то же явление, но также может дать ключевое понимание механизмов этого явления. Другими словами, если вы выясните, что непременным условием наблюдений является конкретная примесь в воде (присутствует в одной лаборатории, но отсутствует в другой), то вы узнаете кое-что важное о процессе, о котором вы иначе могли бы и не узнать, — какой бы примесь ни была, это поможет вам выяснить механизмы изучаемого явления.
107
Baker M. 2016. 1500 Scientists Lift the Lid on Reproducibility. Nature 533(7604): 452-454. doi:10.1038/533452a.