Выбрать главу

Процент мутаций у потомства, так называемую частоту мутаций, можно повысить в сравнении с низкой природной частотой мутаций, облучив родителей рентгеновскими или гамма-лучами. Полученные таким образом мутации ничем (кроме количества) не отличаются от спонтанных, и складывается впечатление, что рентгеновские лучи также могут вызывать «природные» мутации. У дрозофилы многие особые мутации спонтанно происходят снова и снова в больших культурах; их местоположение картировали на хромосоме и дали им специальные названия. Более того, были обнаружены «множественные аллели», то есть две и более различных «версий» и «прочтений» – помимо нормальной, немутантной – одного участка хромосомного кода. Это означает существование не двух, но трех и более вариантов данного конкретного «локуса», любые два из которых относятся друг к другу как «доминантные/рецессивные», когда одновременно встречаются в соответствующих локусах двух гомологичных хромосом.

Эксперименты с мутациями, индуцированными рентгеновским излучением, создают впечатление, что каждый «переход», скажем, от нормальной особи к некому мутанту или наоборот, обладает своим «рентгеновским коэффициентом», выражающим процент потомков, которые мутировали данным образом при воздействии на родителей стандартной дозы рентгеновского излучения до зачатия.

Первый закон. Мутация – единичное событие

Более того, законы, управляющие частотой индуцированных мутаций, просты и наглядны. Здесь я буду придерживаться сообщения Н.В Тимофеева-Ресовского[21], опубликованного в «Биологических обзорах», т. IX за 1934 год. В значительной степени оно касается блистательной работы самого автора. Первый закон таков:

(1) Рост частоты мутаций точно пропорционален дозе облучения, поэтому можно говорить [как это сделал я] о коэффициенте роста.

Мы настолько привыкли к простой пропорциональности, что можем недооценить далеко идущие следствия этого нехитрого закона. Чтобы их понять, давайте вспомним, что, например, цена товара отнюдь не всегда пропорциональна его количеству. При обычных обстоятельствах продавец настолько удивится, если вы купите у него шесть апельсинов, что, когда вы решите взять целую дюжину, может отдать ее дешевле двойной цены за шесть штук. Во времена дефицита происходит обратное. В настоящем случае мы делаем вывод, что первая половинная доза радиации, которая, скажем, вызывает мутации у одного из тысячи потомков, не затрагивает всех остальных – не делает их более склонными или устойчивыми к мутации. Иначе повторная половинная доза не вызвала бы снова лишь одну мутацию на тысячу. Таким образом, мутация не является кумулятивным эффектом, к которому приводят последовательные небольшие дозы радиации, усиливающие друг друга. Она должна представлять собой единичное событие, происходящее в одной хромосоме во время облучения. Что это за событие?

Второй закон. Локализация события

На данный вопрос отвечает второй закон, а именно:

(2) Если варьировать характеристики (длину волны) излучения в широких пределах, от мягких рентгеновских лучей до весьма жестких гамма-лучей, коэффициент останется неизменным, при условии, что вы будете использовать одну и ту же дозу в так называемых рентгенах. То есть если определите дозу, измерив общее количество ионов, производимых на единицу объема в соответствующем стандартном веществе в том же месте и в то же время, когда подвергнутся облучению родители.

В качестве стандартного вещества используют воздух – не только ради удобства, но и потому, что органические ткани построены из элементов с таким же атомным весом. Нижний[22] порог величины ионизации или сопряженных процессов (возбуждений) в тканях получают, умножив уровень ионизации воздуха на отношение плотностей. Таким образом, очевидно – и более серьезное исследование подтверждает это, – что единичное событие, вызывающее мутацию, представляет собой ионизацию (или сходный процесс), происходящую в некоем «критическом» объеме половой клетки. Каков этот критический объем? Его можно оценить на основании частоты мутаций посредством следующего рассуждения: если доза в 50 000 ионов на 1 см3 приводит к вероятности возникновения мутации 1:1000 в любой конкретной гамете (что оказалась в области облучения), «цель», в которую следует «попасть» ионизации для появления этой мутации, занимает лишь одну пятидесятимиллионную долю сантиметра кубического. Эти числа не соответствуют действительности и приведены исключительно ради примера. Реальную оценку дает М. Дельбрюк[23] в статье Дельбрюка, Н. В. Тимофеева-Ресовского и К. Г. Циммера[24], которая также является основным источником теории, изложенной в следующих двух главах. Он приводит значение десять средних атомных расстояний в кубе, где содержится всего лишь около 103 – тысяча – атомов. Простейшая интерпретация данного результата заключается в том, что существует высокая вероятность вызвать мутацию, если ионизация (или возбуждение) имеет место «не далее чем в десяти атомах» от данного конкретного места хромосомы. Обсудим это подробнее.

вернуться

21

 Тимофеев-Ресовский, Николай Владимирович (1900–1981) – советский генетик, занимавшийся радиационной и популяционной генетикой и микроэволюцией.

вернуться

22

 Нижний – поскольку эти другие процессы нельзя измерить вместе с ионизацией, но они могут быть задействованы в производстве мутаций.

вернуться

23

 Дельбрюк, Макс (1906–1981) – американский физик и биофизик немецкого происхождения, лауреат Нобелевской премии.

вернуться

24

 Циммер, Карл (1911–1988) – немецкий биофизик, основоположник изучения влияния ионизирующего излучения на ДНК.

полную версию книги