Теперь, обозначив вкратце главную идею, а точнее, пределы наших исследований, я опишу линию атаки. Я предлагаю вначале рассмотреть представления наивного физика об организмах – то есть идеи, что могут возникнуть в сознании физика, который, выучив свою физику, а точнее, статистическое основание науки, начинает размышлять о них и о том, как они себя ведут и функционируют, и в конце концов честно спрашивает себя, способен ли он посредством того, чему научился, с точки зрения своей относительно простой, четкой и скромной науки, внести какой-либо существенный вклад в данную проблему.
Оказывается, вполне способен. Далее нужно сравнить его теоретические ожидания с биологическими фактами. Выяснится, что, хотя в целом его идеи представляются весьма разумными, они нуждаются в значительной коррекции. Таким образом мы постепенно приблизимся к правильной точке зрения – точнее, если выразиться более скромно, точке зрения, которую я считаю правильной.
Я не уверен, что мой подход является самым лучшим и простым. Однако он мой. Я сам был «наивным физиком». И не смог отыскать более простого и ясного пути к цели, нежели моя кривая дорожка.
Хороший способ развить представления наивного физика – начать со странного, почти нелепого вопроса: почему атомы такие маленькие? Да, они действительно очень малы. Каждый фрагмент материи, с которым мы имеем дело в повседневной жизни, состоит из множества атомов. Чтобы донести этот факт до аудитории, подобраны многочисленные примеры, самый впечатляющий из которых принадлежит лорду Кельвину[6]. Представьте, что вы можете пометить молекулы в стакане воды; затем вылейте содержимое стакана в океан и тщательно перемешайте, чтобы равномерно распределить помеченные молекулы по семи морям. Если впоследствии вы наберете стакан воды в любом месте океана, то обнаружите в нем около сотни ваших меченых молекул. Разумеется, их будет не ровно 100 (даже если вычисления дают именно такой результат). Их будет 88, или 95, или 107, или 112, но вряд ли 50 или 150. Ожидаемое «отклонение», или «флуктуация», составит порядка корня квадратного из 100, то есть 10. Статистик выразит это так: вы обнаружите 100±10 молекул. Пока этот комментарий можно проигнорировать, однако позднее мы используем его в качестве иллюстрации статистического закона √n.
Реальный размер атомов[7] составляет примерно длину волны желтого света. Это сравнение существенно, поскольку длина волны грубо характеризует размеры мельчайшего объекта, видимого в микроскоп. Таким образом, подобный объект содержит тысячи миллионов атомов. Но почему атомы такие маленькие? Очевидно, данный вопрос является уловкой, поскольку в действительности он касается вовсе не размера атомов, а размера организмов, точнее, наших собственных тел. Атом мал в сравнении с «гражданской» единицей длины, например, ярдом или метром. В атомной физике обычно используют так называемый ангстрем (сокращенно Å), который составляет 10–10 метра, или, в десятичном представлении, 0,0000000001 метра. Диаметры атомов варьируют от 1 до 2 Å. «Гражданские» единицы, по сравнению с которыми атомы столь малы, тесно связаны с размерами наших тел. Согласно легенде, ярдом мы обязаны английскому королю-шутнику, которого советники спросили, какую единицу использовать. Он вытянул руку вбок и ответил: «Используйте расстояние от середины моей груди до кончиков пальцев, это подойдет». Правдива история или нет, но она важна для наших целей. Разумеется, король указал длину, сравнимую с его собственным телом, понимая, что любая другая будет неудобной. Несмотря на любовь к ангстремам, физик предпочитает слышать, что на его новый костюм потребуется шесть с половиной ярдов твида, а не шестьдесят пять тысяч миллионов ангстремов.
Таким образом, мы установили, что наш вопрос касается соотношения двух размеров – размера нашего тела и размера атома. С учетом неоспоримого главенства независимого существования атома, этот вопрос следует переформулировать так: почему наши тела столь велики в сравнении с атомом?
Представляю, как многие смышленые студенты-физики или химики оплакивали факт, что все наши органы чувств, составляющие вполне значимую часть организма, а следовательно с точки зрения вышеупомянутого соотношения состоящие из множества атомов, слишком грубы, чтобы ощутить влияние одиночного атома. Мы не можем увидеть, или почувствовать, или услышать отдельные атомы. Наши гипотезы на их счет заметно отличаются от непосредственных открытий, совершенных при помощи крупных органов чувств, и не могут быть проверены напрямую.
6
Томсон, Уильям, барон Кельвин (1824–1907) – британский физик-математик, в честь которого названа абсолютная единица температуры.
7
Согласно современным представлениям, у атома нет четких границ, а следовательно, «размер» атома не является определенной концепцией. Однако мы можем охарактеризовать или, если хотите, заменить его расстоянием между центрами атомов в твердом или жидком состоянии, но, разумеется, не газообразном, в котором оно, при нормальных давлении и температуре, увеличивается примерно в десять раз. –