Выбрать главу

Как астрономы добывают знания о сверхдальних объектах?

Сотрудники отдела Релятивистской астрофизики Государственного астрономического института им. П. К. Штернберга разработали модель эволюции ТДС. В компьютере «рождаются» двойные звезды, которые затем живут pi видоизменяются согласно заданным законам.

Реально существует множество различных типов двойных систем, и при моделировании можно следить за системами всех этих типов. Рассматривается промежуток времени от 0 до 10 млн лет, а за такой период не все типы двойных систем успевают сформироваться. Но при этом трудно рассчитывать на появление редких, экзотических источников, а если бы они и появились в расчетах, то результат был бы неустойчив из-за своей малой статистической значимости (вспомните бросание монетки).

Если система состоит из черной дыры и сверхгиганта, не заполняющего свою полость Роша (т. е. если его вещество не перетекает в быстром темпе на черную дыру), то мы будем называть такую систему источником типа Cyg X-1 в Лебеде — наиболее известного представителя этого типа, являющегося одним из лучших кандидатов в черные дыры, наравне с рентгеновскими новыми. Аккреция в такой системе идет из звездного ветра, и рентгеновская светимость может достигать значительной величины, но не слишком близкой к критической.

Если на компактный объект падает больше вещества, чем он может «проглотить», то из-за давления излучения часть падающего газа будет отбрасываться обратно. Сверхаккрецирующие черные дыры могут иметь наблюдательные проявления в виде струй (джетов), а в центре Галактики как раз наблюдаются кандидаты в черные дыры, обладающие струйными истечениями вещества. Также можно рассмотреть системы, состоящие из черной дыры и звезды главной последовательности (ЧД + ГП).

В первые несколько миллионов лет «прародители» нейтронных звезд еще не успели проэволюционировать. Время жизни некоторых систем может быть невелико, и такие источники быстро вымирают. Таким образом, наши предки миллионы лет назад имели куда большие шансы обнаружить черные дыры в центральной области Галактики. К счастью (или к сожалению?), они предоставили это нам. Сейчас может быть всего несколько систем такого типа. Согласно расчетам, на 7 млн лет существует всего несколько таких систем.

Ученым удалось сравнить предсказания модели с наблюдениями. Наиболее ценные данные о рентгеновских источниках в центре Галактики дали наблюдения со спутника «Гранат». У кандидатов в черные дыры, источников 1Е 1740.7-2942 («Великий Аннигилятор») и GRS 1758-258, в радиодиапазоне наблюдаются джеты. На временном масштабе порядка месяцев поток жесткого рентгеновского излучения от этих объектов изменяется в десятки раз.

ТАК ЧТО ЖЕ ПРОИСХОДИТ В ЦЕНТРЕ ГАЛАКТИКИ?

Основной вывод таков: наблюдаемое количество и пространственное распределение рентгеновских источников в центральной области Галактики не противоречат гипотезе о вспышке звездообразования, происшедшей около 7 млн лет назад.

В дальнейшем было бы интересно проследить эволюцию некоторых других типов объектов, особенно одиночных черных дыр и нейтронных звезд, аккрецирующих вещество межзвездной среды. Такие объекты могут наблюдаться на расстоянии центра Галактики современными спутниками лишь при очень малой скорости релятивистского объекта относительно межзвездной среды (порядка 10 км/с), что маловероятно. Однако одиночные нейтронные звезды могут быть периодическими источниками с большей светимостью в случае накопления вещества на магнитосфере.

Моделирование эволюции тесных двойных систем дает возможность не только оценки изменения количества рентгеновских источников в галактиках с течением времени и суммарной рентгеновской светимости галактик, но и позволяет рассмотреть более локальные события, такие как вспышки звездообразования. Особое место также занимают галактики со вспышкой звездообразования в ядерной области. Сейчас популярна гипотеза, что на протяжении миллиардов лет эти галактики испытывают короткие вспышки бурного звездообразования в своих центральных областях.

Итак, по всей видимости, несколько миллионов лет назад в центре нашей Галактики произошла мощная вспышка звездообразования, результатом которой являются, в частности, наблюдаемые в этой области рентгеновские источники.

Аномальная звезда

Изучая химический состав формирующегося планетарного диска вокруг звезды Бета Живописца, американские астрономы обнаружили в нем аномально высокое содержание углерода — элемента, составляющего основу жизни на Земле. По словам сотрудницы Лаборатории экзопланет и звездной астрофизики НАСА (ExoPlanets and Stellar Astrophysics Laboratory) доктора Аки Роберге (Aki Roberge), руководившей исследовательской группой, «… поиск планетарных систем, формировавшихся так же, как наша, много лет заботит ученых. Но то, что нашли мы, оказалось большим сюрпризом: вокруг этой звезды углерода больше, чем можно было ожидать. Там происходит что-то необычное».