Иными словами, происходит следующее: уже одна только попытка определить, в какую щель пролетит пуля, наделяет ее тем самым рысканием, которое необходимо, чтобы разрушить интерференционную картину. Это рыскание — не что иное, как мера предосторожности: таким способом природа защищает квантовую теорию. Для того чтобы вести себя как волна, частица должна иметь возможность делать две вещи одновременно — или, сказать по-другому, иметь две возможности делать разные вещи, — так чтобы волны, ассоциируемые с этими неразличимыми, по сути, возможностями, могли накладываться друг на друга, или интерферировать. Если же эти возможности удается различить — путем измерения или наблюдения, что реализовалась скорее одна возможность, а не другая, — тогда уже больше нет неразличимых возможностей, а значит, нет и интерференции. Наше измерение-наблюдение делает нечто такое, что уничтожает возможность интерференции между частицами, а именно: оно наделяет частицы случайным рысканием [27].
Уточню — на примере с нашим пулеметом. Уже само обнаружение щели, сквозь которую проходит пуля, — иными словами, точное определение места, где эта пуля находится (вспомним про отдачу стенок щели), — наделяет пулю случайным рысканием и, таким образом, добавляет неопределенности ее скорости (или импульсу, что в данном случае одно и то же). В этом — вся суть! Как установил в 1927 году молодой немецкий физик Вернер Гейзенберг (1901–1976), существует компромисс: чем больше мы уверены в том, где находится частица, тем меньше мы уверены в величине ее импульса. Обратное тоже справедливо: чем больше мы уверены в том, что знаем импульс частицы, тем меньше уверены в ее местонахождении.
И это фундаментальный принцип. Речь идет в равной степени как о неодолимой неопределенности наших представлений о субатомных частицах, так и о неодолимой непредсказуемости их поведения. В повседневном мире мы точно знаем: вот человек переходит улицу на городском перекрестке и движется он со скоростью три километра в час. В микроскопическом мире мы лишены возможности с уверенностью знать обе эти вещи. Если мы знаем точно одно, это неизбежно означает, что мы остаемся в полном неведении относительно другого. Есть предельный предел — да простят мне эту тавтологию — наших знаний об окружающем мире. Вглядитесь как следует в реальность, и вы не увидите там ничего четко обрисованного. Эта реальность расплывается бессмысленным пятном с неясными очертаниями, подобно фотографии в газете, если рассматривать ее слишком близко.
Вот он — «принцип неопределенности Гейзенберга». Именно этот принцип в конечном итоге объясняет, почему атомы не съеживаются, превращаясь в ничто, и почему земля под нашими ногами твердая. Согласен: тот факт, что электроны представляют собой волны, а волнам необходим простор, — это лишь половина объяснения. Вторая половина обнаружится, стоит лишь поразмышлять, что случится с электроном, если его начнут слишком сильно прижимать к ядру. Это будет означать, что его местоположение станет известным с большой степенью точности. Но, согласно принципу неопределенности Гейзенберга, чем больше мы уверены в местоположении частицы, тем меньше мы уверены в ее импульсе. Это очень похоже на то, как если бы мы засунули пчелу в спичечный коробок. Встряхните коробок — пчела разозлится и будет с остервенением колотиться о стены своей тюрьмы. Вот электроны в атомах и есть те самые пчелы в коробках. Атомам, по словам поэта Адриана Митчелла, «на месте не сидится, им хочется повсюду пускаться в рок-н-ролл…». Когда мы ступаем по земле, наш вес сжимает атомы, из которых она состоит. Это сжатие заставляет электроны хоть чуть-чуть, но приблизиться к ядрам. А принцип неопределенности Гейзенберга понуждает их воспротивиться и оттолкнуться от ядер.
Вот почему земля твердая, а материя — плотная. Да, в частности, по причине волновой природы электронов. Но также по причине неодолимой неопределенности микроскопического мира и еще потому, что наши знания о фундаментальной реальности имеют «предельный предел». Именно об этом в конечном итоге и говорит нам тот факт, что земля под нашими ногами — твердая.
27
Здесь мы по-прежнему говорим об «акте наблюдения», или взаимодействии пули со стенкой, отчего пуля начинает некоторым образом рыскать из стороны в сторону. Другими словами, мы говорим, что неопределенность не свойственна частице «от рождения», она порождается актом наблюдения. На самом же деле неопределенность именно свойственна частице. Лучшая иллюстрация этого — декогерентность, распад суперпозиционных состояний.