Выбрать главу

3. Не больше двух горошин в стручке одновременно

Многообразие мира говорит нам удивительную вещь: в природе должно существовать нечто такое, что мешает электронам сидеть друг на друге

…Именно благодаря тому, что электроны не могут сидеть друг на друге, существуют и столы, и другие твердые предметы.

Ричард Фейнман[28]

Квантовые механики? И что они делают целыми днями?

Роб Эванс (поэт-исполнитель)

Оглянитесь вокруг: вот одуванчик, вот ураган, назревающий в Мексиканском заливе, вот новорожденный ребенок, вот звезда, мерцающая в вечернем небе. Невероятное, безграничное многообразие — одна из самых поразительных черт окружающего нас мира. Как пророчески заметил Демокрит два с половиной тысячелетия назад, все это удивительное многообразие — просто-напросто отражение того факта, что небольшое число кирпичиков, или атомов, могут соединяться друг с другом огромным количеством способов. Из простого, как ни парадоксально, рождается сложное. Все дело в комбинациях.

Таким образом, многообразие мира говорит нам: невозможно, чтобы атомные кирпичики были одного-единственного вида — таких видов должно быть множество. Но почему все же множество, а не один? Причина этого должна иметь какое-то отношение к тому, что отличает один вид атомов от другого. А то, что отличает атомы, — это количество электронов, которые они содержат. Именно электроны, обращающиеся на огромных (по меркам малого мира) расстояниях от центрального ядра, обеспечивают взаимодействие между атомами. Они обозначают «поверхность» атома и то, как один атомный кирпичик «Него» сцепляется с другими. Проще говоря, именно электроны делают атом кальция кальцием, атом золота — золотом, а атом платины — платиной.

Итак, безграничное многообразие окружающего мира говорит нам нечто очень важное об электронах. По сути, это «нечто важное» можно выразить так: электроны испытывают удивительную антипатию друг к другу, и притом очень сильную. Но здесь мы забегаем немного вперед…

Для того чтобы мы в полной мере оценили, с какой стати многообразие окружающего мира решило поделиться с нами таким необычным и весьма специфическим фактом, требуется некоторая подготовка. Например, необходимо знать кое-что о том, каким образом электроны размещаются внутри атомов и почему этот способ размещения порождает атомы, которые ведут себя столь по-разному.

Как и все частицы материи, электроны ведут себя подобно волнам. По де Бройлю, чем меньше импульс частицы, тем больше волна. Поскольку электрон — самая легкая на свете частица, обладающая массой [29], он, вообще говоря, отличается и самой большой длиной волны. Разумеется, именно по этой причине электрон, в большей степени, чем все остальные субатомные частицы, проявляет поразительнейший волновой характер, и по этой же причине абсолютно невозможно понять атом, не приняв во внимание сей аспект природы электрона. Вспомним: только жажда простора, присущая волне электрона, спасает эту частицу от стремительного полета по спирали к ядру атома и превращения там в ничто — только она делает возможным само существование атомов.

У органной трубы есть самая низкая, или основная, частота и плюс к ней более высокие частоты — «обертона». Чем больше частота, чем больше максимумов и минимумов волны в данной области пространства — тем более резок и интенсивен звук. Если говорить об электроне в атоме, то подобная волна соответствует частице, которая движется быстрее, обладает большей энергией и, таким образом, способна презреть электрическое притяжение ядра и обращаться вокруг него на большом расстоянии.

Тот факт, что волне электрона доступен лишь ограниченный набор частот, означает, что электрон в атоме не волен нарезать свои круги на произвольном расстоянии от ядра. Ему разрешено обращаться вокруг ядра только на строго определенных, «специально выделенных» расстояниях, — а о каких-нибудь других и думать не смей! Вообразим, что законы физики позволяют вам стоять только в трех метрах от дерева, или в восьми, или в двадцати семи, но никак иначе. Вам это покажется полной нелепостью, однако для электронов, обращающихся вокруг атомного ядра, дело обстоит именно так.

Самая близкая к ядру орбита, разрешенная электрону, — как раз та, которая установлена принципом неопределенности Гейзенберга. Можно сказать и по-другому: ее устанавливает сам электрон, который с пчелиным раздражением жужжит в своей коробке, не желая, чтобы ему отвели еще более тесное пространство [30]. Эта орбита соответствует самым низким колебаниям из всех возможных для электрона — то есть основной частоте. Другие доступные орбиты, располагающиеся все дальше и дальше от ядра, соответствуют высокочастотными обертонам.

вернуться

28

Цит. по: Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Перевод с английского А. В. Ефремова, Г. И. Копылова, О. А. Хрусталева. — М.: Мир, 1965. — Вып. III. Гл. 38.

вернуться

29

Здесь имеется в виду «масса покоя». Некоторые частицы, такие, как фотоны, не имеют массы покоя. Они рождены, чтобы двигаться со скоростью света, и не могут существовать в покое по отношению к чему-либо или кому-либо.(Прим. автора).

вернуться

30

См. главу 2.(Прим. автора).