Выбрать главу

 

Это сравнение, весьма сложное для упомянутых реакций, мы хотим проиллюстрировать здесь на примере встречи двух молекул водорода, которые захотели бы образовать молекулу, составленную из четырех атомов водорода (такая реакция запрещена). В исходных молекулах обе волны, занятые электронными парами, со всех сторон похожи друг на друга. Про такие волны говорят, что они симметричны. В противоположность этому в продукте реакции правая часть одной из волн представляет собой гребень, а левая — впадину, разделенные посередине зоной покоя, т. е. такая волна антисимметрична.

Значит, в результате реакции изменилось бы важнейшее свойство удобной волны-симметрия. Такое изменение и внезапное появление зоны покоя, которой до этого не было, равноценны разрыву электронной пары в волне. А поскольку такой разрыв противоречит заповеди, о которой мы говорили выше, реакция будет запрещена.

Таким образом, в химических реакциях, как это показали Вудворд и Хофман, во избежание разрыва электронной пары симметрия удобной волны должна сохраняться.

5.6. Змея, кусающая себя за хвост

Если молекуле бутадиена дать дополнительную энергию, она может реагировать сама с собой, и в результате замкнется цепочка из четырех атомов углерода. Образуется новая молекула-молекула циклобутена. Для того чтобы сделать это, нужно заставить атомы водорода на концах цепи повернуться так, чтобы волны-восьмерки, принадлежащие концевым атомам углерода, оказались друг против друга. Тогда они смогут перекрыться и образовать новую удобную волну.

Вудворд и Хофман заметили, что для этой реакции возможны два пути в зависимости от того, вращаются ли оба конца молекулы в одном и том же направлении или в противоположных. Они установили, что разрешен лишь один из этих путей.

Замыкание молекулы бутадиена в молекулу циклобутена: перестройка менее удобной волны-ленты в случае двух возможных движений (при замыкании амплитуды волн двух центральных атомов углерода исчезают)

 

Японский химик Фукуи доказал, что ход реакции определяется наименее удобной из волн, занятых электронами. В данном случае волна-лента, охватывающая всю цепь (как в молекуле бензола), на одном конце имеет гребень, а на другом — впадину как над плоскостью молекулы, так и под ней. Для того чтобы образование углерод-углеродной связи протекало в благоприятной ситуации, требуется, очевидно, встреча двух гребней. А для обеспечения такой встречи гребней на концах цепи — что напоминает змею, кусающую себя за хвост, — оба конца должны вращаться в одном направлении.

5.7. Столкновения между молекулами происходят по правилам бокса

Как мы уже говорили, реагирующая молекула подобна велосипедисту-гонщику. Ее путь представляет собой извилистую трассу, изобилующую поворотами. Но если все гонщики стремятся выполнить вираж след в след, то каждая молекула мчится по своей трассе, отличной от трасс других молекул, и при этом еще вертится волчком и делает танцевальные па. Ясно, что движение по такой трассе должно быть очень сложным.

Реакция происходит, так как атом застает молекулу в момент растяжения

 

Для примера рассмотрим встречу атома дейтерия и молекулы водорода (одинокий электрон атома старается разделить электронную пару молекулы). Пока атом приближается, молекула продолжает совершать свои танцевальные па: связь между атомами водорода то растягивается, то сжимается. Если атом застигает молекулу в момент растяжения связи, происходит реакция и атом связывается с одним из атомов молекулы. Если же атом застает молекулу в момент сжатия связи, реакции не происходит.

Реакция не происходит, так как атом застает молекулу в момент сжатия

 

Эта ситуация очень напоминает встречу боксеров. Если боксер наносит удар противнику в тот момент, когда тот отступает или уклоняется, удар гораздо менее эффективен, чем тот, который нанесен "в лоб", в момент сближения.

Выходит, что для результативного взаимодействия между молекулами еще недостаточно соответствующего расположения электронных волн; необходимо также, чтобы соблюдалось соответствие в расположении атомов в каждый момент, т.е. порядок системы.

5.8. Сигналы молекул

Как же молекулы дают о себе знать? Прежде всего вращательное движение изолированной молекулы и колебательные движения ее атомов подчиняются строгим законам. В любой момент молекула может изменить свои движения, обменявшись с внешней средой крупицей энергии. Это изменение выражается в виде какого-то сигнала, который может быть зарегистрирован и который несет важную информацию о молекуле.