Яйцеклетки — это единственные клетки животных, из которых способна развиться целая взрослая особь. Развитие человеческой яйцеклетки инициируется за счет оплодотворения ее сперматозоидом, в результате чего она получает второй набор генов. Схема развития и форма сперматозоида и яйцеклетки весьма различны, однако для оплодотворения нужны они оба, ибо самостоятельно яйцеклетка развиваться не будет. Вместе они передадут по наследству следующему поколению особенности человеческой внешности и строения тела — от цвета глаз до длины носа. Я, признаться, испытываю благоговение перед тем фактом, что мы происходим от одной крохотной яйцеклетки. В этой связи важно знать и понимать, где и как она развивается. Так как же появляются яйцеклетки и сперматозоиды?
Область тела, в которой зарождаются яйцеклетки и сперматозоиды, можно выявить на стадии гаструляции. Образовавшись, эти клетки мигрируют в будущие области человеческих гениталий — в область яичника и яичек. По мере продвижения будущие яйцеклетки делятся и понемногу увеличивают свою численность; более того, они продолжают делать это еще некоторое время после того, как достигают яичника. Затем они перестают делиться, и с этого момента никакого увеличения числа яйцеклеток больше не происходит. Число их равняется примерно шести миллионам. В этих клетках содержится по 23 материнских и по 23 отцовских хромосом.
После этого начинается мейоз, в ходе которого происходит не только сокращение ровно наполовину числа хромосом в яйцеклетках, но и тесное взаимодействие и перемешивание хромосом. Мужские и женские хромосомы перемешивают отцовские и материнские гены, рекомбинируют их по-новому — так образуются новые и отличные от прежних хромосомы.
Во время мейоза будущая яйцеклетка делится дважды, однако при этом хромосомы удваиваются всего один раз и число их сокращается наполовину. Первоначальное число хромосом восстанавливается впоследствии при оплодотворении яйцеклетки за счет проникновения в нее сперматозоида.
Первым шагом на пути к сокращению числа хромосом в ходе мейоза является их удвоение — хромосомы дублируются так, как это происходит во время нормального процесса митоза при обычном делении клетки. При этом удвоенные хромосомы сохраняют связь друг с другом. А затем каждая пара отцовских хромосом находит точно такую же пару материнских хромосом, и эти пары хромосом также связываются. После этого происходит обмен сходными областями между отцовскими и материнскими хромосомами, в результате чего некоторые наборы генов матери оказываются на хромосомах отца, и наоборот. Затем следуют еще два деления клеток без дальнейшего увеличения числа хромосом, в результате чего образуется 4 яйцеклетки с генетическим набором из всего лишь 23 хромосом, которые при этом перемешаны так, что каждая из четырех яйцеклеток имеет различные наборы генов. Это обеспечивает практически безграничное генетическое разнообразие.
Яйцеклетки в яичнике проходят первую стадию мейоза, но больше уже никогда не размножаются, так что общее число возможных яйцеклеток — около шести миллионов — предопределено при рождении девочки. Однако к тому времени, когда девочка достигает половой зрелости, из них остаются в сохранности, избегнув разрушения и деградации, лишь около 40 тысяч. Каждая яйцеклетка способна после оплодотворения развиться в новорожденного ребенка. По достижении половой зрелости яйцеклетки вырастают в размерах в тысячу раз, и мейоз при этом продолжается.
Развитие сперматозоидов не включает мейоза на эмбриональной стадии. Он начинается позже в яичках половозрелого мужчины. Но перемешивание и замещение генов в хромосомах сперматозоидов происходит. В отличие от яйцеклеток, сперматозоиды образуются на протяжении всей жизни мужчины.
В ходе развития как яйцеклеток, так и сперматозоидов конечный набор и состояние их генов должны стать такими, чтобы они могли породить все клетки нашего тела. Отдельные гены, как яйцеклеток, так и сперматозоидов, в дальнейшем, однако, могут и не понадобиться. Они специально деактивируются в ходе процесса, известного под названием «импринтинг». Осуществляется импринтинг за счет добавления особой метиловой группы к необходимым областям ДНК, в результате чего блокируется транскрипция соответствующего гена. У млекопитающих удалось идентифицировать около 70 генов, заблокированных в результате импринтинга, однако ученые установили функции лишь некоторых из них.