Самое худшее заключалось в том, что подводные лодки были невидимы и надводные корабли не успевали принять меры к защите. Ведь подводную лодку в подводном положении можно обнаружить невооруженным глазом в исключительно прозрачной воде на глубинах не более 10–15 метров, находясь над нею, а на больших глубинах и ночью лодка совершенно невидима.
Было ясно, что для успешной борьбы с подводными лодками необходимы прежде всего приборы, способные обнаруживать их под водой.
Вскоре такие приборы были созданы. Это сделал знаменитый французский ученый-физик Поль Ланжевен. В 1918 году он вместе с русским инженером К. Шиловским предложил использовать для обнаружения подводных лодок ультразвуковой пьезоэлектрический излучатель.
Своими работами по пьезоэлектричеству и ультразвуку Поль Ланжевен открыл первую страницу в истории целого ряда наук и технических отраслей. Сюда в первую очередь относится гидроакустика — наука, занимающаяся изучением звуковых явлений в воде.
Любопытны обстоятельства, при которых приходилось работать Ланжевену и его сотрудникам. Опыты с ультразвуком Ланжевен проводил в бассейнах, наполненные морской водой. Работы, конечно, были тщательно засекречены. Чтобы сбить немецких шпионов с толку, был пущен слух, что опыты проводятся с мифическими «лучами смерти», а стало быть, подходить близко к бассейнам опасно для жизни. Для большей убедительности этого слуха в бассейн напустили рыб. Каково же было изумление Ланжевена, когда во время опытов он увидел, что рыбы погибли. Ультразвуки действительно оказались «лучами смерти».
Что же произошло и почему погибли рыбы? Ответить на этот вопрос можно после небольшого экскурса в мир звуков и ультразвуков.
Оттяните и отпустите струну музыкального инструмента. Вы услышите мелодичный звук. Под действием колебаний струны возникнут сгущения и разряжения, распространяющиеся во все стороны в виде звуковых волн подобно тому, как бегут волны на поверхности воды, в которую брошен камень.
Частицы воздуха при этом не перемещаются. Они только колеблются, смещаясь вперед и назад на небольшое расстояние. Это колебательное движение передается частицам вещества все дальше и дальше, пока звук не достигнет нашего уха.
Итак, звук — это колебания мельчайших частиц среды, в которой находится источник звука. В этом природа всех без исключения звуков.
В нашем примере источником звука была струна. Однако им может быть и любое другое колеблющееся тело. Если такой источник звука, например колеблющуюся стальную пластинку, поместить в воду, то в воде тоже возникнет звуковая волна. Она также является результатом колебательного движения частиц, но теперь уже частиц воды (рис. 15).
Звук в различных веществах распространяется с разной скоростью. В воздухе — со скоростью примерно 330 метров в секунду, а в воде около 1,5 километра в секунду. Еще быстрее распространяется звук в твердых телах.
В природе существует бесчисленное количество звуков, но очень многие из них человек не слышит. Дело в том, что человеческое ухо воспринимает звуки с частотой от 16 до 18 000—20 000 колебаний в секунду (герц).
Звуки с частотой свыше 20 000 герц называются ультразвуками. Их часто называют еще неслышимыми звуками, потому что они не воспринимаются человеческим ухом. Не слышим мы и звуки, частота которых ниже 16 герц — это инфразвуки.
В природе человек часто сталкивается с явлением эха. Оно наблюдается в горах при отражении звуковых волн от скал, в лесу при отражении от его границ, в городах при отражении звука от стен больших зданий. Явление эха возникает и в воде.
Теперь понятно, почему Поль Ланжевен обратился к звуковым явлениям. Ведь, во-первых, звук в воде распространяется на большие расстояния, а во-вторых, с помощью отраженных эхо-сигналов можно определить расстояние до погруженной подводной лодки.
Конечно, способ измерения расстояний при помощи эха был известен давно. Его пытались использовать для обнаружения различных препятствий, с которыми мог столкнуться корабль. Такие работы начались после того, как в 1912 году весь мир был потрясен ужасной катастрофой — океанский пароход «Титаник» столкнулся с айсбергом и за несколько минут пошел ко дну вместе с тысячами пассажиров. Именно тогда ученые стали конструировать звуковые приборы для обнаружения подводных препятствий.
В качестве источника звука применяли пакет взрывчатого вещества, создававший в воде звуковые волны (рис. 16). Предлагались и другие виды источников звука. Но все они имели один недостаток: излучение звука происходило равномерно во все стороны. А это означало, что нельзя было установить направление, в котором находилось препятствие, отразившее звук. Кроме того, звуковые волны, создаваемые этими источниками, отражались только от больших подводных препятствий — крупных льдин, берега, дна. Нечего было и думать об обнаружении такой маленькой цели, как подводная лодка.
Необходимо было найти новый источник, который бы посылал и принимал волны узким пучком в нужном направлении подобно тому как прожектор направляет луч света. Таким источником мог быть только ультразвуковой излучатель.
Но каким образом создать ультразвуковые волны в воде?
После долгих исканий ученые остановились па источнике ультразвуковых волн, главной частью которого была пьезокварцевая пластинка.
Если к электродам кварцевой пластинки подключить источник переменного электрического тока, то пластинка будет сжиматься и разжиматься, т. е, колебаться с частотой электрического тока источника. Колебаний пластинки передаются среде, в результате чего возникает звуковая волна. Если частота переменного электрического тока свыше 20 000 герц, то кварцевая пластинка будет излучать ультразвуки. В этом и заключается принцип работы пьезоэлектрического излучателя.
Так кропотливая и настойчивая работа ученых привела к созданию приборов, играющих немаловажную роль в современной войне на море. Вместе с тем эти работы положили начало практическому применению пьезоэлектричества. Бывшее в течение десятков лет «научным курьезом», не имеющим какой-либо практической ценности, пьезоэлектричество получило путевку в жизнь.
ПЬЕЗОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ
Чтобы обнаружить подводное препятствие, нужно не только излучить ультразвук, но и принять отразившееся эхо. Отраженная волна, встретив на своем пути кварцевую пластинку, воздействует на нее, в результате чего пластинка будет сжиматься и разжиматься. На противоположных электродах попеременно появятся разноименные заряды, которые после усиления и преобразования подаются на индикаторные приборы.
Устройство, позволяющее преобразовать энергию электрического тока в звуковую энергию и, наоборот, звуковую энергию в энергию электрического тока, принято называть акустическим преобразователем. Если при этом используется пьезоэлектрический эффект, то преобразователь называется пьезоэлектрическим.
Пьезоэлектрические преобразователи нашли широкое применение в гидроакустических приборах различного назначения. Чаще всего это либо приемники, служащие только для приема звуковых или ультразвуковых колебаний, либо излучатели, служащие для создания звуковых или ультразвуковых волн.