Другой способ использования света бактериями – это изменение молекулярных свойств класса молекул, называемых опсинами. Эти молекулы встроены в клеточные мембраны, где фотоны могут натолкнуться на них. Во внутренней структуре опсинов заперты еще более мелкие молекулы – хромофоры. Хромофор, цепляющийся за внутренности опсина, приводит бо́льшую молекулу, встроенную в клеточную мембрану, в специфическое неактивное состояние. Когда свет определенной длины волны попадает в клетку, он также натыкается на хромофор и вызывает его смещение, а структура самого опсина изменяется, вызывая другие реакции в клетке.
У некоторых одноклеточных бактерий в клеточную мембрану встроена молекула родопсина, которая реагирует со светом. Но в отличие от более сложных организмов родопсин у бактерий действует как насос, который доставляет высокие концентрации ионов хлора или перемещает протоны в клетку, что, в свою очередь, изменяет способ дальнейшей жизнедеятельности клетки. У одноклеточных эукариот тоже есть родопсины, которые реагируют на попадание света. Родопсин бактерий довольно сильно отличается от опсинов высших эукариотов, поэтому неизвестно, являются ли опсины позвоночных продуктом его эволюции. Дело в том, что механизмы обнаружения света опсинами и родопсинами схожи и дают представление о том, как высшие животные воспринимают свет. Еще одна особенность заключается в том, что у одноклеточных организмов эти механизмы реализуются с помощью белков без централизованной обработки информации в мозге. «Решения», которые одноклеточный организм «принимает» под воздействием окружающей среды, – быстрые, химические и внутренние по отношению к отдельной клетке. Высшие организмы и одноклеточные добывают информацию из внешнего мира очень похожими способами, но вот обрабатывают они ее по-разному.
Многоклеточная жизнь появилась почти на 1,5 миллиарда лет позже одноклеточной. Сегодня существует большое количество одноклеточных эукариот, и схема их родства ясно показывает, что уже на ранних этапах эволюции было много случаев дивергенции между ними и многоклеточными животными и растениями. Это наблюдение справедливо, потому что не все одноклеточные эукариоты – ближайшие родственники и не все многоклеточные организмы происходят от одного общего предка. Некоторые одноклеточные эукариоты, например, более тесно связаны с растениями, чем с другими одноклеточными эукариотами. Взять хотя бы водоросли и одноклеточные эукариоты – хламидомонады («хлами», как ласково называют их ученые): и те и другие гораздо теснее связаны с растениями, чем с другими одноклеточными организмами, такими как амеба.
Растения довольно хорошо понимают сигналы раздражителей из окружающего мира, но для этого они развили иные механизмы, нежели животные. Отличный пример – подсолнух: если можете, потратьте несколько часов, наблюдая, как он реагирует на солнечный свет. Самый интересный момент происходит на рассвете, когда цветок медленно поворачивается туда, где ожидается восход солнца. Подсолнух очень точно определяет время и ловко передвигает свой цветочек на нужное место. Другой пример – мимоза, растение, реагирующее на прикосновения. А любой, кто видел «Лавку ужасов», легко вспомнит венерину мухоловку, которая быстро и жадно хватает добычу, необдуманно оказавшуюся поблизости с ее ловушкой (рис. 1.2). Однако у растений нет нервных клеток и, следовательно, нет мозга или нервной системы, как у животных. (Я делаю эти категоричные заявления о растениях и нервных системах, хотя знаю, что существует журнал под названием Plant Neurobiology («Нейробиология растений») и несколько институтов занимаются изучением одноименной науки. Но нейробиология растений и нейробиология животных все же фокусируются на разных факторах.)
Рис. 1.2. Нейробиология растений или интеллектуальное поведение? Венерина мухоловка (Dionaea muscipula)
Метафора становится важной при изучении реакции организмов на окружающую среду. Организм с «метафорическим мозгом», подобный растению, не обрабатывает информацию из внешнего мира так, как это делают позвоночные, и это неудивительно. Под метафорическим мозгом я подразумеваю систему, аналогичную мозгу позвоночных, но не являющуюся нейронной. Именно эта способность реагировать на внешний мир побудила некоторых исследователей инициировать нейробиологический подход по отношению к растениям. Но очень трудно отрицать, что у растений нет мозга и нервной системы. Я предпочитаю признать, что растения довольно хорошо чувствуют внешний мир и у них есть некий способ интегрировать свое восприятие окружающей среды, но в функциональном структурном контексте у них нет мозга. С точки зрения эволюционной биологии можно сказать, что растительная версия нервной системы приближена к мозгу насекомого или позвоночного. Центральная сенсорная система растения – это метафора нервной системы беспозвоночных или позвоночных. С интеллектуальной точки зрения мне гораздо приятнее осознавать, что растения изобрели новый способ восприятия внешнего мира, не имеющий ничего общего с нервной системой. И действительно, когда мы начинаем исследовать пути, по которым развивались структуры и механизмы традиционных чувств у животных с нервной системой, эта гипотеза многократно подтверждается. Вероятно, надо согласиться с Майклом Полланом, ярым защитником растительной жизни на планете, который предлагает говорить не о «нейробиологии растений», а скорее о «разумном поведении растений». И в этом контексте растения развили свои способности особым путем, без какого-либо эволюционного сходства с разумным поведением животных, за исключением использования некоторых основных молекулярных инструментов эволюционного инструментария, который есть у большинства многоклеточных эукариот. Разумное поведение позволяет растению воспринимать стимулы из окружающей среды, такие как свет или концентрация химических соединений, и интерпретировать их «интеллектуальным» образом. Нейронная основа разумного поведения растений – это просто еще одно решение для межклеточной коммуникации, на которое натолкнулась жизнь на Земле и которое развивалось как ответ на потребность в сенсорной связи с внешним миром.