Повсюду в животном мире — начиная от одноклеточных простейших, которые уплывают от яркого света, и до перелетных птиц, ориентирующихся по едва уловимым изменениям положения солнца или звезд, — в основе восприятия света лежит один и тот же процесс: посредством химической реакции в рецепторных клетках световая энергия преобразуется в электрическую. Вспомогательные структуры органов зрения у всех животных также в основном сходны. Хрусталик фокусирует свет на рецепторных клетках, а специальное приспособление (в глазе позвоночных — радужная оболочка) пропускает на рецепторы свет, идущий только в определенном направлении. Иногда вспомогательные структуры очень просты, как, например, у дождевого червя; светочувствительные клетки, называемые фоторецепторами, распределены у этого животного по всей поверхности тела. Каждый фоторецептор содержит линзоподобную структуру, которая окружена клетками кожи, слегка раздвинутыми вверху. Между ними остается узкий канал, не шире булавочного острия, через который на фоторецепторы может попасть свет, распространяющийся только в одном-единственном направлении. Дождевой червь способен лишь отличать свет от темноты и, быть может, обнаруживать движения предметов, по мере того как тень от них падает сначала на один фоторецептор, а затем на другой. В глазах, имеющих более сложное строение, фоторецепторы сконцентрированы под одной линзой (хрусталиком). Изображение, полученное с помощью хрусталика, подвергается анализу, в результате чего животное может различать форму предметов.
В процессе эволюции глаз некоторых животных превратился в очень сложную структуру. В этой главе мы ограничимся рассмотрением глаз позвоночных, которые представляют собой пример такого развития. Глаза позвоночных, т. е. рыб, земноводных, пресмыкающихся, птиц и млекопитающих, включая и человека, отличаются друг от друга только в деталях, и поэтому глаз человека может служить эталоном. Рассмотрим в общих чертах его строение.
Основные структуры человеческого глаза можно описать очень кратко (фиг. 15). Глазные яблоки расположены в углублениях черепа, называемых глазницами; позади глазного яблока находятся мышцы, при помощи которых осуществляется его движение. Спереди глаз защищен веками, которые автоматически смыкаются при любом прикосновении к ресницам или глазному яблоку; защитную роль играет также особая слезная жидкость, которая увлажняет глаз, смывает инородные частицы, а иногда изливается наружу. Свет попадает в глаз через прозрачное окошко — роговую оболочку, или роговицу, — проходит сквозь отверстие в радужной оболочке и попадает на хрусталик, который фокусирует его на сетчатке. Радужная оболочка, напоминающая диафрагму фотоаппарата, ограничивает количество падающего на хрусталик света. По существу перечисленные структуры можно разделить на две группы: сетчатку с ее фоторецепторами (светочувствительными клетками) и вспомогательные структуры, которые видоизменяют падающий на сетчатку свет.
Проходя через роговицу и хрусталик, свет фокусируется на рецепторах сетчатки. Фокусировка осуществляется посредством изменения формы хрусталика. Количество света, входящего в глаз, регулируется диафрагмой радужной оболочки. Центральная ямка является наиболее чувствительной областью сетчатки; нервы и кровеносные сосуды проходят через сетчатку в области слепого пятна.
1 — роговица; 2 — хрусталик; 3 — радужная оболочка; 4 — сетчатка; 5 — центральная ямка; 6 — слепое пятно.
Вспомогательные структуры глаза образуются в процессе развития из покровных тканей животного. Главная их функция заключается в том, чтобы сфокусировать свет на сетчатке за счет искривления пути световых лучей. Когда луч переходит из одной прозрачной среды в другую, отличающуюся по оптической плотности, траектория его искривляется; этот процесс называется преломлением (фиг. 16). Мы не будем подробно рассматривать процессы, в результате которых идущие от объекта лучи фокусируются на сетчатке и создают изображение; это более уместно в книге по физике. Коротко говоря, входящие в глаз лучи света преломляются дважды: при переходе из воздуха в роговую оболочку и еще раз — когда проходят через хрусталик. Неподвижный хрусталик или линза может фокусировать только те световые лучи, источник которых находится на строго определенном расстоянии от глаза. В фотоаппарате линза фокусирует изображение разноудаленных объектов на расположенной позади нее пленке за счет того, что ее перемещают ближе или дальше от пленки. В глазах некоторых рыб и земноводных имеется аналогичная оптическая система: их почти сферические хрусталики способны двигаться подобно линзе фотоаппарата; они могут подтягиваться к сетчатке за счет сокращения особых мелких мышц и отодвигаться от нее при их расслаблении.
А. Если хрусталик фиксирован, он может фокусировать на сетчатке только те световые лучи, источник которых находится на строго определенном расстоянии от него. Б. Если хрусталик подвижен, он способен фокусировать свет, приходящий из любой точки.
У позвоночных фокусировка обычно осуществляется посредством аккомодации, т. е. за счет изменения преломляющей способности хрусталика (фиг. 17). Известно, что преломляющая способность линзы зависит от ее кривизны: чем больше кривизна, тем больше преломляющая способность. Благодаря эластическим свойствам хрусталика кривизна его может изменяться. Обычно хрусталик уплощен за счет сокращения окружающих его мышц. Когда мышцы расслабляются, хрусталик становится выпуклым и его преломляющая способность возрастает. Большая преломляющая способность необходима для фокусировки изображения близких предметов; чтобы сфокусировать изображения удаленных предметов, хрусталик уплощается, вследствие чего уменьшается его преломляющая способность.
Фокусировка световых лучей, приходящих от разноудаленных источников света, осуществляется за счет изменения оптической силы хрусталика.
А. Хрусталик расслаблен и имеет округлую форму; При этом на сетчатке фокусируются изображения близко расположенных предметов. Б. Мышцы натянули связки, которые в свою очередь растялули хрусталик; фокусируются изображения удаленных предметов.
1 — мышцы; 2 — связки; 3 — хрусталик; 4 — радужная оболочка.
Непосредственно перед хрусталиком находится радужная оболочка — кольцо, образованное непрозрачной тканью мышц. Сокращение этих мышц изменяет отверстие кольца — зрачок. Самая важная функция радужной оболочки — уменьшать количество попадающего в глаз света, чтобы чувствительные клетки сетчатки не подвергались чрезмерному раздражению. Это особенно важно для ночных животных, например для кошек, у которых очень чувствительная сетчатка.
Днем радужная оболочка у кошек почти полностью закрыта, так что остается только хорошо знакомая всем вертикальная щель, через которую проходит свет. Размер зрачка регулируется совершенно автоматически; однако, для того чтобы максимально расширенный зрачок сузился до минимума, требуется несколько минут, и поэтому мы «слепнем», когда внезапно выходим из темноты на яркий свет: зрачок быстро сужается, а затем начинает медленно расширяться, по мере того как сама сетчатка приспосабливается к новому, более яркому свету.
Сетчатка представляет собой вырост головного мозга, и этим объясняется одна весьма странная особенность ее строения. Дело в том, что фоторецепторные клетки сетчатки расположены позади нервных волокон и свет должен проходить через эти волокна. По-видимому, это не лучшая выдумка природы; это почти то же самое, что вставить пленку в фотоаппарат обратной стороной к объективу. Тем не менее сквозь нервные волокна к рецепторам может пройти достаточное количество света. Такое строение глаза имеет лишь один существенный недостаток. Чтобы попасть в мозг, эти волокна и кровеносные сосуды в определенном месте должны пройти через сетчатку. В этом месте нет рецепторов; оно называется слепым пятном, каковым и является в действительности.