Можно выманить паука из его укрытия, если постучать стебельком травы по краешку паутины. Паук тотчас выскакивает и бежит к центру паутины, а затем поворачивается к источнику вибрации и подбегает к нему — увы, лишь только для того, чтобы узнать, как его одурачили. Вначале паук реагирует на вибрации, но окончательно он распознает свою добычу с помощью зрения и обоняния; известно, что неодушевленные объекты он вырезает из паутины и они падают вниз. Пауки нападают не на всякий источник вибрации, их интересуют только вибрации определенного диапазона частот.
Более пятидесяти лет назад американский натуралист У. Т. Бэрроуз изучал поведение пауков, живших на веранде его дома. Эти пауки плели круговую паутину. Прикрепив тонкую щетинку к язычку электрического звонка, он получил регулируемый вибратор, который использовал для того, чтобы выяснить, как реагирует паук на колебания паутины различной частоты. Большие пауки отзывались на колебания с частотой 24…300 Гц; именно с такой частотой бьют крыльями некоторые насекомые, например комнатные мухи, попав в сеть. Пауки меньшего размера, как выяснилось, чувствительны к колебаниям более высоких частот (от 100 до 500 Гц), т. е. к более частым движениям крыльев насекомых, меньших по размеру. Другой американский исследователь изучал домовых пауков на спортивной площадке университета. Ему удавалось выманить пауков из укрытий, если паутина колебалась с частотой 400…700 Гц. При больших частотах, однако, пауки проявляли беспокойство и убегали в свое укрытие или даже прыгали на землю. Пока еще не понятно, почему высокочастотные вибрации и даже хлопанье в ладоши пугают пауков. Вероятно, все эти вибрации сигнализируют об опасности; однако трудно представить себе, чтобы кто-либо из врагов паука создавал такие колебания.
ГЛАВА 10
Тепло, холод и комфорт
Температурная рецепция отличается от всех других чувств несколькими особенностями. Мы осознаем лишь резкие отклонения температуры, которые ощущаем как жару или холод; но тем не менее человеческий организм реагирует на температуру все время. Количество тепла, которое мы получаем из внешней среды или отдаем в нее, постоянно уравновешивается за счет мышечной активности, дрожи или потоотделения. В итоге температура тела человека поддерживается на постоянном уровне: приблизительно 36,9 °C. Если эта температура повышается — при заболеваниях или при физической нагрузке, — человек потеет, т. е. его кожа покрывается слоем жидкости, которая, испаряясь, охлаждает организм. Если же температура тела понижается, например на сквозняке, человек начинает дрожать: мышцы быстро сокращаются и расслабляются, чтобы увеличить теплопродукцию.
Животных, способных за счет физиологических процессов регулировать температуру своего тела, так что ее изменения остаются в очень узких пределах, называют теплокровными. К ним относятся только млекопитающие и птицы. Все остальные животные относятся к холоднокровным: температура их тела изменяется в зависимости от температуры окружающей среды. Термины «теплокровные» и «холоднокровные» нельзя считать удачными: у млекопитающих во время зимней спячки кровь становится совершенно холодной, а у насекомых и пресмыкающихся, живущих в тропиках, она бывает сравнительно теплой. Поэтому ученые предпочитают называть животных, способных к терморегуляции, гомойотермными, а животных, не способных к такой регуляции, пойкилотермными. Однако при этом нужно иметь в виду следующее обстоятельство: опыты, свидетельствующие о том, что температура тела пойкилотермных животных повышается или понижается в соответствии с температурой внешней среды, проводились в лабораторных условиях на животных, живущих в неволе. Поведение этих животных в естественных условиях не было принято во внимание, а между тем в природе некоторые пойкилотермные животные могут в значительной степени регулировать температуру своего тела.
Именно постоянство температуры тела приводит к тому, что температурное чувство отличается от всех остальных чувств. Характерная особенность других сенсорных органов состоит в том, что они не дают реакции при отсутствии раздражения, поступающего из окружающей среды, а сила их реакции зависит от энергии воздействующих на них раздражителей, возрастая пропорционально усилению раздражений. Так, при отсутствии света мы не видим ничего, а по мере возрастания освещенности, например на рассвете, мы начинаем видеть все более яркий свет. То же самое относится и к звуку: либо мы не слышим ничего, либо слышим звуки различной силы. Иначе обстоит дело с температурой: окружающая среда всегда имеет какую-то определенную температуру, и поэтому терморецепторы не отсчитывают температуру от нуля, а сравнивают ее с нормальной температурой тела. Вследствие этого мы говорим о двух видах температурных ощущений: все, что имеет температуру ниже нормальной температуры тела, кажется нам холодным или прохладным; все, что имеет более высокую температуру — горячим или теплым. Холод и тепло — понятия относительные: если подержать руку в воде со льдом, а потом опустить ее в холодную воду из-под крана, эта вода покажется нам теплой; однако та же самая вода покажется холодной, если предварительно подержать руку в горячей воде.
Все это вряд ли облегчает изучение температурного чувства. Рассмотрим следующий простой эксперимент. Подержите один палец в горячей воде, а другой — в холодной, а затем опустите оба пальца в теплую воду. Первый палец ощутит холод, а второй — тепло. Спустя некоторое время пальцы привыкнут к новой температуре и не будут чувствовать ни тепла, ни холода. Отсюда можно сделать вывод, что органы температурного чувства в отличие от глаз или ушей реагируют не на абсолютную величину стимулов, а на скорость перехода от тепла к холоду и наоборот. Когда терморецепторы адаптируются к определенной температуре, они как бы устанавливаются на новую «нулевую точку», которая и служит точкой отсчета для всех дальнейших изменений температуры. Однако здесь имеется некое осложнение. Прижмите к коже холодный предмет, а затем уберите его. Ощущение прохлады сохранится в течение некоторого времени, хотя кожа, вероятно, уже успела вновь согреться. Это явление до сих пор еще не удалось объяснить.
В сущности мы не вправе говорить об органах температурного чувства, поскольку температуру, как правило, воспринимают находящиеся в тканях тела простые рецепторы, не имеющие никаких вспомогательных структур. Поэтому находить и изучать терморецепторы достаточно трудно; тем не менее в ряде электрофизиологических исследований было показано, что существует два вида терморецепторов: тепловые и холодовые. Эти данные помогают объяснить некоторые особенности температурного чувства, которые мы описали выше. Число нервных импульсов, генерируемых этими рецепторами, не пропорционально силе раздражения, как это имеет место, например, в рецепторах уха. Реакция терморецепторов зависит от скорости изменения температуры, а при постоянной температуре поток нервных импульсов, идущих от терморецепторов, остается неизменным.
Мы до сих пор не знаем, каким образом в нервной системе импульсы, идущие от этих двух (а может быть, и от каких-нибудь еще) типов рецепторов, взаимодействуют, создавая у нас так хорошо знакомое «ощущение температуры»; однако, хотя физиологические основы температурного чувства еще не очень ясны, мы вполне можем обсудить, какое влияние оказывает температура на жизнь человека и животных. Напомним еще раз, что температурное чувство отличается от всех остальных чувств. Оно служит животным для обеспечения благополучия и комфорта, а не для ориентации или обнаружения пищи, врагов и особей противоположного пола; исключение составляют лишь немногие животные — сорные куры, клопы и змеи, о которых пойдет речь в конце этой главы. У всех остальных животных это чувство направлено главным образом внутрь организма: с его помощью животное оценивает не столько внешнюю, сколько внутреннюю среду. Температурное чувство почти всегда служит одной цели — постоянно поддерживать оптимальную температуру тела животного, которая регулируется либо с помощью таких процессов, как потоотделение или дрожь, либо в результате активного поведения животного, например перемещения в тень или на солнцепек.