Первоначально возможности таких экспериментов были ограничены, поскольку ушные раковины человека можно деформировать лишь до известного предела, не рискуя вызвать необратимые повреждения. Кроме того, ушные раковины человека невозможно заменить ушными раковинами других конфигураций и оценить их эффект. Проблема была решена, когда изготовили модели ушных раковин человека с вмонтированными в слуховой проход микрофонами. Воспринятые такими моделями звуки передавались затем экспериментатору с помощью специальных наушников. Опыты показали, что хрящевые бугорки в наших ушных раковинах действуют подобно дросселям, задерживая звук, когда он входит в ухо. Величина этой задержки зависит от угла, характеризующего направление на источник звука. Оценивая разницу во времени прихода звука к каждому уху, мозг способен определить местонахождение источника звука. Если этот источник расположен прямо впереди или сзади, звук приходит в оба уха одновременно; если он находится слева, то требуется больше времени, чтобы звук достиг правого уха, и т. д.
Существуют два других способа, с помощью которых животные определяют местонахождение источника звука; в зависимости от размеров головы и длины звуковой волны различные животные пользуются этими способами в большей или меньшей степени. Даже в отсутствие ушной раковины ухо обладает разной чувствительностью к звукам, приходящим с разных сторон (фиг. 7). Используя оба уха, можно определить местонахождение источника звука с помощью стереоскопического слуха, точно так же как определяется расстояние с помощью стереоскопического зрения. Положение источника звука оценивается на основе различной громкости звука в каждом ухе или времени его прихода в каждое ухо. Если частота звука превышает 15 кГц, голова служит для него своего рода препятствием, подобно волнорезу, на задней стороне которого звуковые волны отсутствуют. Вследствие этого ухо, расположенное ближе к источнику звука, регистрирует значительно более громкие сигналы, чем то, которое находится дальше от него. Кроме того, оценивается и разница во времени прихода звуковой волны к каждому уху. Если источник звука расположен на одинаковом расстоянии от каждого уха, то звуковая волна достигает обоих ушей одновременно. Если голова повернута всего лишь на 5° в сторону, разница во времени составляет 0,00004 с, а при повороте на 90° эта разница составит 0,0005 с. При наличии определенной разницы в громкости звука и во времени его прихода к ушам мозг способен уловить небольшие различия между сигналами, приходящими от каждого уха. Он может различать сигналы, отстоящие друг от друга во времени не менее чем на 0,0001 с, что представляет собой сравнительно большой временной интервал. Этот недостаток в какой-то степени корректирует дроссельная система, имеющаяся в наших ушах, или движения головы из стороны в сторону, в результате чего каждое ухо по изменению громкости звука может очень точно определять местонахождение его источника; точно так же поступает коза, когда двигает ушными раковинами. Но даже все эти приспособления не очень эффективны при определении местонахождения источника звука, и обнаружить его обычно помогает зрение.
Иначе обстоит дело у сипухи. До недавнего времени считалось, что совы охотятся исключительно с помощью зрения. У них большие глаза и, по-видимому, достаточно хорошее зрение, чтобы они могли охотиться даже тогда, когда луна и звезды скрыты облаками. Проведенные в последние годы опыты показали, что на самом деле сипуха способна обнаруживать свою жертву с помощью одного только слуха, набрасываясь на движущуюся мишень с поразительной точностью. Опыты проводили в темной светонепроницаемой комнате. В первой серии экспериментов пол в комнате покрывали сухими листьями и выпускали туда мышь. Можно было слышать, как мышь пробирается сквозь листья и затем останавливается. Тотчас же было слышно, как сипуха покидает свой насест, и глухой звук возвещал о том, что она уже на полу. Когда в комнате включали свет, видели, что мышь в когтях у совы. Дальнейшие опыты показали, что сова попадала в цель гораздо чаще, чем промахивалась, а если и промахивалась, то мыши удавалось ускользнуть только чудом.
Однако без тщательной проверки эти опыты еще нельзя было считать доказательством того, что сова определяет местоположение жертвы по создаваемому мышью шуму. Хотя светонепроницаемость комнаты и лишала сову возможности пользоваться зрением, она могла обнаруживать мышь с помощью эхолокации, по запаху или теплу, излучаемому ее телом, так же как змеи обнаруживают тепло, излучаемое телами животных (гл. 10). Эти возможности были исключены в серии контрольных опытов, в которых по полу на веревочке протаскивали бумажный шарик. Сова так же уверенно бросалась и схватывала бумагу; следовательно, для обнаружения своей жертвы она пользовалась только слухом. Чтобы доказать это окончательно, мышь выпускали на голый пол, на котором она не производила никакого шума, и в этом случае сова оказывалась совершенно неспособной обнаружить ее.
Тем не менее эти эксперименты еще не доказывают однозначно, что сипухи охотятся только с помощью слуха. Их зрение в десять, а то и в сто раз лучше нашего, и вполне вероятно, что сипухи пользуются им, когда охотятся в сумерках или при свете луны. Если бы сипухи полагались только на зрение, то в облачные или безлунные ночи они оказались бы на голодном пайке; поэтому хороший слух служит им ценным запасным средством для обнаружения жертвы. Нельзя считать, что у всех сов такой же хороший слух или такое же хорошее зрение, как у сипухи. Домовый сыч и американская кроличья сова охотятся днем. Вряд ли они очень часто пользуются слухом, хотя в темноте они видят не лучше, чем мы с вами.
Способность сипухи и, как теперь известно, других охотящихся ночью сов так точно определять местоположение своей жертвы по слуху отчасти обусловлена строением их уха. Ухо этих птиц построено по такому же принципу, что и наше, но улитка у них прямая, а не спиралевидная, и три косточки среднего уха заменены одной, называемой колонкой; кроме того, у птиц обычно отсутствуют ушные раковины. Таким образом, основной принцип строения одинаков, но ухо совы имеет определенные особенности, которые усиливают его чувствительность.
У сов большая барабанная перепонка, так что прилегающая к ней колонка передает значительное количество звуковой энергии к овальному окну улитки, размеры которого относительно малы. Поэтому давление звука усиливается теоретически в 40 раз, а не в 18, как в нашем ухе. У большинства птиц колонка примыкает к центру барабанной перепонки, а у сов она расположена несколько эксцентрично, что обеспечивает дополнительное усиление давления. Барабанную перепонку можно рассматривать как рычаг. «Точкой» опоры при этом служит периметр перепонки, где ее края прикрепляются к кости. Когда барабанная перепонка колеблется, ее центр выпячивается больше, чем края; при этом она действует как рычаг, передвигая колонку вперед и назад. Сместившись от центра и оказавшись ближе к точке опоры, колонка передвигается хоть и не так далеко, как если бы она находилась в центре, но зато с большей силой. Таким образом происходит усиление попадающего в ухо совы звука, прежде чем он будет передан внутреннему уху.