Хочется подчеркнуть огромную сложность экспериментов по определению массы покоя нейтрино и тот факт, что сами экспериментаторы не считают массу нейтрино окончательно установленной. Эта величина еще будет проверяться и перепроверяться. Однако если полученный результат подтвердится, то следствия из него будут чрезвычайно серьезными, особенно для астрономии. Скорее всего поэтому теоретики не стали дожидаться окончательных результатов в проверке величины массы нейтрино и активно стали исследовать то, что нужно будет изменить в наших представлениях о Вселенной с учетом у нейтрино массы покоя. Кстати, появляются сообщения о других экспериментах, говорящих об отличии массы покоя нейтрино от нуля, причем не только для электронных, но и для других сортов нейтрино.
Следует напомнить, что возможные последствия для астрофизики, вытекающие из гипотезы о существовании у нейтрино массы покоя, рассматривались задолго до обсуждаемых экспериментов. Еще в 1966 году советские физики С. Герштейн и Я. Зельдович рассмотрели вопрос о том, как бы сказывалась значительная масса покоя нейтрино на расширении всей Вселенной. Венгерские физики Г. Маркс и О. Шалаи также изучали возможные космологические следствия предположения о ненулевой массе покоя нейтрино.
Но все это были, так сказать, первые прикидки, анализ разных возможностей. Ситуация резко изменилась после прямого эксперимента советских физиков.
Теоретики, вооруженные указанием экспериментаторов, поднялись на настоящий штурм проблемы.
Согласно данным, полученным в ИТЭФе, нейтрино в 20 тысяч раз легче электрона и в 40 миллионов раз легче протона. Почему же теоретики считают, что эта легчайшая, ни с чем не взаимодействующая частица должна играть определяющую роль во Вселенной?
Ответ прост: во Вселенной очень много реликтовых нейтрино. В кубическом сантиметре их в среднем почти в миллиард раз больше, чем протонов, и, несмотря на ничтожную массу, в сумме нейтрино оказываются главной составной частью массы материи во Вселенной. Нетрудно подсчитать, что если масса покоя электронных нейтрино равна 6 · 10–32 грамма, то только их средняя плотность (не учитывая нейтрино других сортов) составляет примерно 10–29 г/см3, а это примерно в 10–30 раз превышает плотность всего другого «не нейтринного» вещества. И значит, именно тяготение нейтрино должно быть главной действующей силой, определяющей законы расширения Вселенной сегодня. Обычное вещество по массе, а значит, и по гравитационному действию составляет только 3–10 процентов «примеси» к основной массе Вселенной — к массе нейтрино. Можно поэтому смело сказать, что Вселенная состоит в основном из нейтрино, что мы живем в нейтринной Вселенной. Именно этот вывод мы имели в виду, когда в начале главы говорили о фантастической картине, открывшейся перед глазами ученых.
Полученный вывод имеет еще одно интересное следствие.
Важнейшим вопросом, касающимся эволюции Вселенной, является вопрос о том, будет ли вечно продолжаться ее расширение. Ответ, как мы знаем, зависит от того, чему равна средняя плотность материи во Вселенной: если она больше критического значения, то тяготение этой материи через какое-то время затормозит расширение Вселенной и заставит галактики сближаться друг с другом — Вселенная сменит расширение на сжатие; если же плотность меньше критического значения, то тяготение материи недостаточно для того, чтобы остановить расширение, и Вселенная будет расширяться вечно.
Критическая плотность, по современным данным, равна, как говорилось, 10–29 г/см3. Еще недавно считалось, что основную долю плотности во Вселенной составляет обычное вещество, для которого плотность равна примерно 3 · 10–31 г/см3. Это означало, что плотность меньше критической и Вселенная должна расширяться вечно. Теперь же есть веские основания считать, что плотность только реликтовых электронных нейтрино примерно равна критической 10–29 г/см3. Следует вспомнить, что, помимо реликтовых электронных нейтрино есть еще мюонные и тау-нейтрино. Об их массе покоя ничего не известно из прямых экспериментов, однако из теории и косвенных экспериментов следует, что если отлична от нуля масса покоя электронных нейтрино, то, вероятно, отлична от нуля и масса покоя других сортов нейтрино. Причем, вероятно, массы покоя других сортов нейтрино не меньше массы покоя электронных нейтрино. Если мы учтем это, то средняя плотность материи во Вселенной окажется больше критической. А это значит, что в далеком будущем, скорее всего через многие миллиарды лет, расширение Вселенной сменится сжатием, и причиной этого «сильнейшего» вывода оказалась «слабейшая» из частиц — нейтрино.