Это была моя первая публикация по общей теории относительности.
Но вернемся к работе К. Шварцшильда. Он с помощью изящного математического анализа решил задачу для сферического тела и переслал ее А. Эйнштейну для передачи Берлинской академии. Решение поразило А. Эйнштейна, так как сам он к тому времени получил лишь приближенное решение, справедливое только в слабом поле тяготения. Решение же К. Шварцшильда было точным, то есть справедливым и для сколь угодно сильного поля тяготения вокруг сферической массы; в этом было его важное значение. Но ни А. Эйнштейн, ни сам К. Шварцшильд тогда еще не знали, что в этом решении содержится нечто гораздо большее. В нем, как выяснилось позже, содержится описание черной дыры.
А теперь продолжим разговор о второй космической скорости. Какую скорость согласно уравнениям Эйнштейна надо придать ракете, стартующей с поверхности планеты, чтобы она, поборов силы тяготения, улетела в космос?
Ответ оказался чрезвычайно прост. Здесь справедлива та же формула, что и в ньютоновской теории. Значит, вывод П. Лапласа о невозможности для света уйти от компактной тяготеющей массы подтвердился теорией тяготения Эйнштейна, согласно которой вторая космическая скорость должна быть равна скорости света как раз на гравитационном радиусе.
Сфера с радиусом, равным гравитационному, получила название сферы Шварцшильда.
Итак, согласно теории Эйнштейна, как только радиус небесного тела становится равным его гравитационному радиусу, свет не сможет уйти с поверхности этого тела к далекому наблюдателю, то есть оно станет невидимым. Но читатель наверняка уже обратил внимание, что это чрезвычайно необычное свойство далеко не единственное из тех «чудес», которые должны произойти с телом, размеры которого сравнялись с гравитационным радиусом. Согласно сказанному в предыдущем разделе сила тяготения на поверхности звезды с радиусом, равным гравитационному, должна стать бесконечно большой, так же как и бесконечно большим должно быть ускорение свободного падения. К чему это может привести?
Чтобы ответить на этот вопрос, вспомним сначала, почему обычные звезды и планеты не сжимаются к центру под действием тяготения, а представляют собой равновесные тела.
Сжатию к центру препятствуют силы внутреннего давления вещества. В звездах это давление газа с очень высокой температурой, стремящееся расширить звезду. В планетах типа Земли это силы натяжения, упругости, давления, также препятствующие сжатию. Равенство сил тяготения и указанных противоборствующих сил как раз и обеспечивает равновесие небесного тела.
Противоборствующие тяготению силы зависят от состояния вещества: от его давления и температуры. При его сжатии они увеличиваются. Однако если сжать вещество до какой-то конечной (не бесконечно большой) плотности, то они останутся также конечными. Иначе обстоит дело с силой тяготения. С приближением размера небесного тела к гравитационному радиусу тяготение стремится, как мы знаем, к бесконечности. Теперь оно не может быть уравновешено противоборствующей конечной силой давления, и тело должно неудержимо сжиматься к центру под его действием.
Итак, важнейший вывод теории Эйнштейна гласит: сферическое тело, радиус которого равен гравитационному радиусу и меньше, не может находиться в покое, должно сжиматься к центру. «Но позвольте, — спросит читатель, — если на гравитационном радиусе сила тяготения бесконечна, то какова она станет, как только тело уменьшится до размеров меньше гравитационного радиуса?»
Ответ довольно очевиден. До сих пор мы говорили о силе тяготения на поверхности статического, не сжимающегося в данное время тела. Но она зависит от состояния движения. Как мы уже говорили выше, при свободном падении наступает состояние невесомости — свободно падающее тело вообще не испытывает действия гравитационной силы. Поэтому на поверхности свободно сжимающегося тела не ощущается никакой силы тяготения (и вне сферы Шварцшильда, и внутри ее). Увлекаемое тяготением вещество не может остановиться на сфере Шварцшильда (оно испытало бы тогда бесконечную силу тяготения). Тем более не может оно остановиться внутри сферы Шварцшильда. Любая частица, например ракета, со сколь угодно сильным двигателем, оказавшись от тяготеющего центра на расстоянии меньше гравитационного радиуса, должна неудержимо падать к этому центру.