Одним из самых известных ранних дополнений к PageRank была модель случайного серфера, которая, как следует из названия, вносила случайность, предполагая, что в определенных точках любой человек, переходящий по веб-ссылкам, случайно переходит по другой ссылке. В дальнейшем в алгоритм вносились усовершенствования, некоторые из которых были направлены на попытки обмануть систему, а другие - на улучшение результатов поиска. Например, алгоритм Hilltop стремится разделить веб на тематические разделы, а затем определить, есть ли на сайте ссылки от экспертов, которые не связаны с этим сайтом. Если на сайт ссылается много независимых экспертов, то он считается авторитетным в своей тематической области и может использоваться для оценки важности других сайтов. Таким образом, Hilltop опирается на практику цитирования, развивая ее в определенном направлении. Этот алгоритм изначально разрабатывался независимо от Google и был куплен им для интеграции в собственный набор инструментов. Несомненно, существует множество других корректировок и совершенно новых алгоритмов, интегрированных в PageRank, и из-за коммерческой тайны их будет больше, чем нам известно. Но этих примеров достаточно, чтобы установить основной принцип: как бы он ни был реализован, успешный поиск Google - успешный как с точки зрения выдачи полезных результатов, так и с точки зрения популярности - происходит от чтения творений уже существующего сообщества Всемирной паутины (Turrow 2011: 64-8; Vaidhyanathan 2012: 60-4; Hillis et al. 2012).
Второе ключевое направление развития поиска было открыто Google только после того, как первые алгоритмы чтения WWW оказались успешными. Это второе направление - персонализация, которая стала возможной только после того, как Google стал достаточно большим, чтобы начать собирать значительные массивы данных о пользователях своей поисковой системы. Изучение этих данных позволило нацеливать результаты поиска, причем разные пользователи получают разные результаты поиска. Это особенно актуально, если пользователь пользуется другими сервисами Google, такими как Gmail, и имеет аккаунт Google. Персонализация, по мнению многих, представляет собой процесс, в ходе которого Google определяет, интересуется ли поисковик, использующий такой термин, как "серфинг", серфингом на воде, музыкальными каналами или Интернетом и т. д. Также кажется, что Google идентифицирует пользователей индивидуально, каждый из которых имеет определенный возраст, местоположение, пол, расу и так далее, предлагая пользователям результаты, которые, по мнению пользователей, соответствуют их демографическим характеристикам. Однако рассматривать персонализацию в таким образом - значит рассматривать ее с точки зрения практики пользователя, а не Google. Для последней ключевым является не столько каждый человек, сколько корреляции между многими людьми; именно взаимосвязи являются ключом к получению полезного результата для человека, а не наоборот. Это связано с тем, что необходимо постоянно делать выводы о том, что если многие люди определенного типа предпочитают конкретный результат поиска, то он может быть доставлен людям, которые соответствуют этому типу. Именно такие массовые корреляции позволяют ориентироваться на определенные группы людей - например, предположить, что мужчины определенной возрастной группы могут предпочесть версию фильма "Самый длинный ярд", снятую Бертом Рейнольдсом, тогда как представители более молодой возрастной группы могут искать одноименный ремейк Адама Сэндлера, а люди другой национальности могут быть заинтересованы в футбольной версии под названием "Злая машина" под руководством Винни Джонса (Feuz et al. 2011; Hillis et al. 2012).
Персонализация, достигаемая путем построения корреляций между категориями, или профилирование, как его иногда называют, - это второй способ добычи социальных связей для создания поиска Google (Elmer 2004). Результаты, выдаваемые индивидуумам, частично основаны на корреляциях, которые призваны математически отразить смысл социальной и культурной жизни. Это не тотализирующий анализ, который представляет собой один набор внутренне согласованных социальных динамик, а отслеживание или картирование любых социальных отношений, которые могут быть найдены в результате анализа данных, собранных Google. Таким образом, практика Google по выдаче результатов поиска и генерированию данных, на которых может быть основана реклама, включает в себя различные способы, с помощью которых алгоритмы могут читать отношения между людьми.