Итак, формализованный характер СТЭ позволяет утверждать, что сделанная мною модель отражает положения этой теории. Модель сделана в Excel, если хотите, можете скачать её на моём сайте; впрочем, надеюсь, что всё будет понятно и из самой колонки. Вообще, Excel дает замечательные возможности для моделирования, делая его доступным для людей без математического и программистского образования.
В модели рассматривается популяция, состоящая из свободно скрещивающихся организмов. Как это и принято в СТЭ, фенотипы (и приспособленность организмов) определяются их генами. Рассмотрим два гена, A и B, каждый из который представлен двумя аллелями: A и a для гена A, B и b для гена B. Итак, в популяции могут существовать девять генотипов: AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, aabb.
Слишком просто? И этого минимума хватит, чтобы комбинаторика генов оказалась не вполне тривиальной.
Итак, зададим численность популяции (обозначим её K – ёмкость среды – максимальное количество особей, которое может обитать в данных условиях). Зададим начальные доли генотипов (PAAbb; PAaBB и так далее). Что дальше?
По СТЭ, источник новых признаков – новые гены, возникающие в результате мутаций; не будем пока с этим спорить. Зададим в модели частоты, с которыми происходят переходы одних аллелей в другие: Pa→A, PA→a, Pb→B и PB→b.
Осталось предусмотреть ту силу, которая должна менять соотношение аллелей в определённом направлении, – отбор. Для каждого генотипа укажем его приспособленность (fitness): FAAbb; FAaBB и прочие.
Модель работает так. Исходя из распределения генотипов в популяции, вычисляется состав гамет, которые они будут производить. Для упрощения мы рассматриваем гермафродитные организмы, которые производят и яйцеклетки, и сперматозоиды (один раз в своей жизни). Вероятность встречи гамет с любыми генотипами одинакова (например, так может быть, если гаметы выбрасываются на волю случая в воду, как это делают многие морские донные животные).
При вычислении состава гамет учитывается вероятность мутаций. Комбинации гамет определяют генотипы потомства. Шансы на выживание потомков зависят от их приспособленности.
Всё, цикл работы модели окончен. Осталось определить состав следующего поколения. Округление долей генотипов в популяции до единиц особей носит вероятностный характер. К примеру, величина 1,4 округлится до 2 с вероятностью 0,4, и до 1 — с вероятностью 0,6.
Осталось повторить описанный цикл много раз (модель построена для 500 поколений). Выведем на график самый интересный, с точки зрения СТЭ, показатель – динамику соотношения альтернативных аллелей. Компоненты модели я расположил на листе Excel так, чтобы в один экран попадали и график, и окошки для ввода входных значений (обозначения перечислены выше). Скрины этого экрана и иллюстрируют дальнейшее изложение.
Ну что, начнём.
Если в начальном состоянии популяции по каждому гену представлен лишь один аллель, мутации постепенно повышают долю альтернативных аллеей. А что будет, если соотношение аллелей окажется равновесным?
В отсутствие отбора частоты аллелей начнут «гулять» вокруг среднего значения. Кстати, иногда такие случайные смещения могут привести к потере одного из аллелей.
Пора «включать» отбор. Пусть особи, которые обладают «удачным» генотипом, имеют на 1 процент большие шансов на выживание, чем все прочие. Вам кажется, что такое малое преимущество не может сыграть свою роль в эволюции?