Мировая наука готова на многое, чтобы проверить правильность теорий об устройстве Вселенной — или отвергнуть таковые. В принципе, от обнаружения/необнаружения бозона Хиггса зависело, насколько вообще современные научные представления о мироустройстве соответствуют (или не соответствуют) реальности. Пока больше похоже, что соответствуют в полной мере.
Ускорители заряженных частиц на встречных пучках (коллайдеры) — класс экспериментальных установок, предназначенных для наблюдения физических явлений на высоких энергетических значениях. Иначе говоря, элементарные частицы разгоняются до колоссальных скоростей, соударяются, далее исследуются продукты этих соударений.
Первые активные работы по созданию коллайдеров начались в конце 1950-х годов в лабораториях «Фраскати» в Италии, SLAC в США и Институте ядерной физики СССР. Первым заработал итальянский электро-позитронный коллайдер AdA. Однако результаты своих исследований первыми опубликовали советские физики, работавшие на коллайдере ВЭП-1 (Встречные электронные пучки). Затем последовали публикации со стороны американских исследователей.
Первым адронным коллайдером стал протонный синхротрон ISR, запущенный в ЦЕРНе в 1971 году. Его энергия составляла 32 ГэВ в пучке.
В 1983-1988 годах в Женевской долине на глубине ста метров выкопали 27-километровый туннель, пересекший под землёй границы Швейцарии и Франции. С 1989 по 2000 годы в этом туннеле размещался мощнейший ускоритель лептонов — Большой электронно-позитронный коллайдер. К концу срока эксплуатации его максимальная энергия достигала 200 ГэВ (по 100 ГэВ) на пучок.
Второго ноября 2000 года, после одиннадцати лет работы, Большой электро-позитронный коллайдер был отключён. На следующий год в том же туннеле началось строительство того, что в итоге стало называться Большим адронным коллайдером (БАК).
Хотя в начале прошлого десятилетия предполагалось, что БАК заработает уже в 2005 году, только в 2006-м был установлен последний сверхпроводящий магнит. Летом 2008 года было объявлено о завершении первых предварительных испытаний, в ходе которых пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК.
10 сентября 2008 года БАК был официально запущен: пучки протонов успешно прошли весь периметр коллайдера в обоих направлениях. Но уже через девять дней случилась серьёзная авария: в одном из секторов большого тридцатикилометрового кольца произошло короткое замыкание.
- Всё кольцо [туннель Коллайдера — Прим. ред.] поделено на восемь секторов; один сектор — это 154 дипольных магнита, соединённых последовательно между собой и работающих на токе в 12000 А. Это колоссальный ток, при этом энергия, которая запасается в магнитном поле, — 1,33 ГДж, что эквивалентно 200 кг тротила, — рассказывал «Компьютерре» Александр Ерохин. — Между всеми магнитами есть соединения сверхпроводящего кабеля – это расположенные внахлёст сверхпроводящие шины, спаянные олово-серебряным припоем, которые находятся там же, в криостате при 2 К.
Причиной оказалась банальная халтура: «полетевшее» соединение оказалось плохо пропаяно. Видимо, на каком-то этапе на монтажниках сэкономили, как следствие — лишние траты на ремонт, на который ушёл без малого год.
После того как Большой адронный коллайдер был перезапущен заново, постепенно увеличивалась его мощность.
Вопрос, почему бозон Хиггса не был открыт раньше, настолько же закономерен, насколько прост и ответ на него: мощности не хватало. Под мощностью тут стоит понимать две величины — энергию соударения частиц (то есть до каких кинетических значений удаётся разгонять элементарные частицы) и так называемую «светимость».
Под светимостью понимается количество частиц в единицу времени на единицу площади. Проектная светимость БАК составляет 1034 с-1*см-2 — 2808 сгустков. Также планируется улучшить фокусировку луча, то есть, уменьшив поперечный размер пучка, фактически увеличить плотность частиц.
Зачем это нужно? Просто для увеличения количества «событий» — можно разогнать две частицы до запредельных значений: продуктом их распада может стать бозон Хиггса... а может и не стать. Более того, он настолько редко проявляется, что от одиночных событий нужных результатов можно ждать неограниченно долгое время. Светимость и фокусировка повышают частоту событий (соударений), и тем самым набирается больше статистических данных, анализ которых позволит (или уже позволил) вычленить всё, что связано с хиггсовским бозоном.