Выбрать главу

Что дальше, после LHC? Действительно, стоимость LHC составила около 6 млрд. долларов. В будущем планируется увеличить энергию LHC вдвое (путем замены магнитов на более сильные). Дальше возможен будет линейный электрон-позитронный коллайдер на энергии до 3 ТэВ. Рассматривается вариант очень большого протон-протонного коллайдера на энергию до 100 ГэВ. Также разрабатывается мюонный коллайдер на энергии до 100 ТeV. Дальнейший подъём энергии практически невозможен ввиду запредельной стоимости и размеров. Этот путь тупиковый, так как характерный масштаб энергий в физике частиц — это масса Планка (масса, составленная из фундаментальных констант скорости света, постоянной Планка и гравитационной постоянной), составляющая 1019 ГэВ, что на 15 порядков больше энергии Большого адронного коллайдера.

Другой подход, который, возможно, позволит понять, что происходит даже при массах Планка, — это детальное изучение редких процессов при доступных энергиях. Очень обещающей является нейтринная физика. Недавно обнаружено, что массы нейтрино отличны от нуля и лежат в области 10-3-10-2 эВ. Есть предположения, что их масса связана с явлениями при планковских энергиях. Детальное изучение нейтрино может также пролить свет на вопрос о том, почему Вселенная состоит из материи, а антиматерия куда-то подевалась. Казалось бы, что всё должно быть симметрично.

Правда, если бы было симметрично, то нас бы не было: материя и антиматерия проаннигилировали бы, и остались бы одни фотоны.

- Что теперь изменится, когда мы нашли бозон Хиггса? Например, мы измерим его параметры, и это позволит нам предсказать или рассчитать какое-нибудь новое явление? Или просто убедились в том, что он есть, и всё?

- Стандартной модели требовался хиггсовский бозон, но не было предсказания его массы. В минимальном варианте хиггсовское поле описывается двумя параметрами, и только один был известен из масс W и Z бозонов. Теперь стала известной масса Хигсса, то есть найден второй параметр. Но вряд ли природа устроена так просто! Наверняка это только начало изучения того скалярного поля (а их может быть не одно), которое придает массы элементарным частицам. Вообще, это удивительно, что открыли хиггсовский бозон. Год с небольшим назад уже ожидали сигнала Хиггса, а его всё не было.

Дирекция ЦЕРНа уже отрабатывала с физиками вариант, что говорить налогоплательщикам, если хиггсовского бозона не будет обнаружено (или вообще ничего на LHC не откроют). Хиггсовский механизм — это только один из возможных вариантов, были и другие.

- Обнаружение бозона Хиггса — самый громкий результат. А какие ещё есть интересные события/наблюдения/открытия, сделанные на LHC?

Пока на LHC только один результат высшего класса — это хиггсовский бозон. Есть некоторые интересные предварительные результаты с детектора LHCb, касающиеся CP-несохранения. Надо ещё разбираться, возможно, это выльется в крупное открытие. Имеются интересные результаты в ион-ионных столкновениях. Там изучается кварк-глюонная плазма, из которой когда-то состояла Вселенная.

- На LHC ведь не кончается физика элементарных частиц. Есть ещё, например, коллайдер ILC. Какое Вы предложили для него решение по гамма-гамма-встречным пучкам?

- Да, я уже говорил о линейных коллайдерах. Быть или не быть и на какую энергию, зависит от того, что откроют на LHC. ILС — International Linear Collider — это сверхпроводящий линейный коллайдер на энергию до 500-1000 ГэВ. Ещё есть проект теплого линейного коллайдера CLIC (Compact Linear Collider) с более высоким темпом ускорения. На нём можно будет достичь энергии 3000 ГэВ.

Длина обоих коллайдеров около 50 км. Существенным отличием линейных коллайдеров от циклических (кольцевых) является однократное использование разогнанных пучков электронов и позитронов. Просто их невозможно развернуть из-за излучения при повороте. Эта особенность позволяет превратить линейный коллайдер в гамма-гамма (фотон-фотонный) коллайдер с примерно такими же энергией и светимостью. Эту идею я предложил тридцать лет назад, и сейчас фотонный коллайдер рассматривается как естественное дополнение к линейному коллайдеру. В фотонном коллайдере сначала разгоняются навстречу электроны, а затем на расстоянии порядка 1 мм от места встречи их облучают мощным лазером.