Выбрать главу

Сказать честно, от регулярных предсказаний конца действия ЗМ есть некоторая несомненная польза. В ходе возникающих после этого дискуссий развенчиваются мифы и обозначаются перспективы. Последний раз шуму наделал американский физик Мичио Каку, год назад посуливший, что уже в течение следующих десяти лет термодинамика и квантовая физика сделают невозможной дальнейшую миниатюризацию электронных схем (см. «Закон Мура: суров, но скоро отмена»). Тогда, помнится, разговор зашёл о технологиях, которые смогут принять эстафету у кремния, — квантовых вычислениях, оптических, молекулярных. Никто, естественно, никаких гарантий тут дать не в состоянии. Зато одновременно прояснилось, что число деталей в микропроцессоре стало чисто маркетинговым, рекламным параметром, не имеющим практического смысла. Потому что хоть производителям и удаётся более-менее выдерживать темп удвоения плотности, фактическая производительность давно уже не растёт прямо пропорционально числу транзисторов (хотя бы потому, что четыре ядра не всегда работают вдвое быстрее двух). Таким образом, уже сегодня полезней фокусировать внимание, скажем, на энергопотреблении системы, нежели на плотности элементов или тактовой частоте.

Оригинальная формулировка Закона Мура из статьи 1965 года звучит так: сложность для самых дешёвых компонентов увеличивается вдвое каждый год. Кстати, обратите внимание на график (заимствованный оттуда же): точки экстремума для годичных кривых — это и есть точки оптимума, о которых говорит Густафсон

С Густафсоном получилось ещё интересней. В интервью The Inquirer он развенчивает миф об оригинальной формулировке ЗМ. По его словам, смысл утверждения Гордона Мура сводился к тому, что удваивается только то число транзисторов, которое наиболее экономически целесообразно произвести. Что, согласитесь, здорово отличается от банального «вдвое каждые X лет», придуманного ради простоты позже. Предположив, что Густафсон прав, можно сделать вместе с ним и следующий шаг: отыскать на графике микроэлектронной эволюции точку оптимума, в которой плотность элементов будет не слишком маленькой (тогда каждый транзистор обойдётся чересчур дорого для покупателей), но и не слишком большой (когда каждый транзистор будет неразумно дорог уже для производителей). Нащупав эту точку, нужно постараться двигаться с ней.

Придерживаясь оптимальной точки, конструктор микропроцессора не только гарантирует себе наивысшую скорость усложнения чипов, но и избегает участия в бессмысленно дорогой «гонке плотностей» (производительность-то всё равно увеличивается в лучшем случае на 10 процентов за год), а покупатель получает наивысшую производительность за наименьшую цену. И это как раз та дорожка, по которой пытается двигаться AMD. Да, Intel уже почти преодолела двадцатинанометровый порог и в следующем году планирует начать производство 14 нм чипов, но AMD мечтает пока только о 20 нм — вероятно, той самой точке оптимума в текущий момент. Гнаться за миниатюризацией ради миниатюризации? Пусть этим занимается Intel.

Но из уточнений Густафсона следует ещё один интересный вывод. По его словам, переход на 20 нм масштаб занял больше времени, чем ожидалось. Почему? Классический ответ на этот вопрос предполагает отсылку к техническим аспектам, но что если дело не в технике, а в той же экономической целесообразности? Вспомните, что творится с (пока ещё) главным потребителем суперсовременных микропроцессоров — персональным компьютером. PC продаются, но рост продаж отсутствует либо отрицателен, причём без особых на то причин. Планшетки, как ни крути, персоналку пока заменить не в состоянии. Что если у слабеющих продаж PC и трудностей миниатюризации один корень?