Если вы посмотрите на формат демонстрационного «автомобильного» экрана из презентации Эдди Кью, вы увидите, что его пропорции выбраны довольно свободно. И это естественно: несмотря на существующую привязку к стандарту DIN (или, скорее, 2DIN), до сих пор нет единого формата диагонали экранов, используемых на центральной консоли автомобиля. И Apple с этим явно придётся что-то делать, если они хотят, чтобы их приложения во всех автомобилях выглядели sexy, что согласуется с традициями компании. И они планируют достигнуть этого, вероятно, в том числе получив от разработчиков свободу на перемещение элементов управления по экрану в автоматическом порядке, средствами iOS 7.
Физика элементарных частиц за пределами БАК: что ожидать от нового коллайдера
Андрей Васильков
Опубликовано 13 июня 2013
Судьба Международного линейного коллайдера решалась вчера специалистами ведущих лабораторий в ходе проводимой через интернет видеоконференции. Проект был представлен исследователями из Токио, Женевы и Чикаго. На его разработку было потрачено более десяти лет. Итоговый пятитомный доклад содержит планы по использованию нового ускорителя для изучения лептонов первого поколения и проверке положений современных теорий из области физики элементарных частиц. Одной из главных задач указывается постановка экспериментов, проливающих свет на природу тёмной материи.
Сегодня Большой адронный коллайдер считается самым крупным ускорителем элементарных частиц. С его помощью был обнаружен бозон Хиггса и определена его масса, подтверждено существование топ-кварка и сделан целый ряд других открытий. Однако его возможности не безграничны, а Стандартная модель – вовсе не предел в развитии наших представлений о свойствах элементарных частиц. Чтобы двигаться дальше, требуются новые ускорители – не столько более мощные, сколько принципиально другие.
Над проектом ILC (International Linear Collider) уже трудятся свыше тысячи учёных и инженеров из более чем ста университетов и лабораторий двух десятков стран. В отличие от кольцевой архитектуры БАК, компоненты нового ускорителя будут размещены в прямом тоннеле длиной тридцать один километр. Однако столкновения электронов и позитронов будут происходить не просто на встречных курсах. В ILC применяется довольно сложная и точно рассчитанная форма трека для получения дистанции пробега частиц, превышающей длину коллайдера. Это позволяет достичь более высоких энергий и снизить потери на синхротронное излучение при сохранении относительно компактных размеров.
В БАК ускорялись тяжёлые заряженные частицы – протоны. Каждый протон состоит из трёх других фундаментальных частиц – кварков. При обычных условиях три кварка (uud) удерживаются вместе за счёт сильного ядерного взаимодействия и ведут себя как одна элементарная частица с положительным зарядом. При столкновении протонов друг с другом и с ионами металлов на скоростях, близких к световым, кварки высвобождаются и порождают новые частицы.
Подбирая условия экспериментов, предпринимались попытки зарегистрировать появление теоретически предсказанных ранее частиц и измерить их энергию-массу. Так был открыт и бозон Хиггса – квант поля с нулевым спином, необходимый для понимания природы массы. Его существование постулировал Питер Хиггс ещё в 1964 году, но подтвердить это предположение удалось лишь спустя сорок восемь лет, используя самый совершенный на сегодня ускоритель элементарных частиц.
Помимо наблюдения за результатами столкновения адронов, для развития Стандартной модели и выхода за её пределы требуется проведение экспериментов с другими фундаментальными частицами – лептонами. Они не участвуют в сильном взаимодействии, и их непосредственное изучение с помощью БАК невозможно.
Согласно последним данным проекта WMAP, доля «обычного» (адронного, а точнее — барионного) вещества во Вселенной составляет не более 4,6 процента. Гораздо большая часть представлена чем-то другим, получившим рабочие названия «тёмная материя» (24 процента) и «тёмная энергия» (71,4 процента).