В обычных городских условиях получать достаточное для питания аппаратуры количество энергии «из воздуха» было практически невозможно. Ситуация изменилась благодаря появлению компонентов со сверхнизким энергопотреблением и разработке метода под названием «обратное рассеивание в окружающей среде» (ambient backscattering).
Концепция основана на устройствах, мощность которых ограничивается десятками, максимум — сотнями микроватт. Это на порядки меньше того, что требуется для упомянутой лампочки накаливания, но именно столько можно гарантированно получить практически везде с помощью пассивной схемы, настроенной на мегагерцевый диапазон. Такой мощности не хватит для генерирования нового радиосигнала, но её вполне достаточно для модуляции и избирательного отражения имеющихся.
Исследователи из штата Вашингтонского университета в Сиэтле решили не ограничиваться расчётами, а создать действующий прототип устройства. Основных требований было два — отсутствие собственного источника питания и способность передавать данные по беспроводному каналу. Звучит похоже на технологию RFID, но это только на первый взгляд. У нового принципа связи есть ряд важных преимуществ.
В отличие от RFID, метод не требует наличия генератора сигнала и точной настройки на узкий радиодиапазон. Если RFID-метки полностью пассивные, то считыватели — активные компоненты системы. Они потребляют около одного ватта и имеют довольно скромный радиус действия, поэтому малопригодны для использования на больших и открытых пространствах.
Кроме того, связь по методу обратного рассеивания обладает максимальной электромагнитной совместимостью, поскольку такие устройства сами не излучают новых радиоволн: они лишь избирательно переотражают имеющиеся. В ходе тестов зарегистрировать помехи удалось лишь в том случае, когда антенна прототипа находилась непосредственно вблизи антенны телевизора. Во всех остальных случаях переотражённый сигнал отфильтровывался телеприёмником как слабая помеха.
Созданный университетской группой прототип состоял из четырёхслойной платы размером с кредитку и дипольной антенны длиной 258 мм. Параметры антенны рассчитывались с учётом выбранной частоты и подбирались в серии экспериментов. На печатной плате были размещены следующие модули: коллектор энергии, приёмник, передатчик и блок сенсорных кнопок. Кроме того, для визуальной индикации работы и в качестве потенциального оптического канала связи на плате был размещён маломощный светодиод.
Приёмник, передатчик и коллектор подключены к одной антенне и работают попеременно. Преобразованная энергия радиоволн (в данном случае — от телебашни) используется для питания всех компонентов.
Схема была оптимизирована для работы в дециметровом диапазоне частот (515–565 МГц). В выбранной полосе шириной 50 МГц местные телевещательные компании одновременно транслировали восемь каналов. Для работы прототипа устройства хватило бы и одного, однако с учётом разной продолжительности вещания и технических перерывов был сделан запас для обеспечения круглосуточного функционирования.
Эффективная излучаемая мощность телевышки была оценена в один мегаватт, поэтому созданные прототипы функционировали даже на удалении более десяти километров.
В приёмнике использовались только аналоговые компоненты, а его потребляемая мощность была в пределах 0,25–0,54 мкВт.
Передача осуществлялась пакетами длиной по 96 бит, из которых 64 бита составляла преамбула (поле для синхронизации). Применяемый компаратор TS881 и микроконтроллер MSP430 также отличались сверхнизким потреблением. Они выполняли декодирование пакетов данных и проверку их целостности по контрольной сумме.
Для созданного прототипа энергопотребление компонентов в процентах от общего выглядит следующим образом: микроконтроллер — 64%; светодиод и сенсорные кнопки — 26%; схема управления питанием — 8%. На модулятор и демодулятор пришлось всего по одному проценту, что демонстрирует исключительную энергоэффективность предложенной технологии.